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This study presents a semi-numerical algorithm based on the coupled-mode theory combined with finite differ-
encing to assess the performance of one-dimensional trapezoidal waveguide gratings, as well as arbitrarily shaped
ones. Our approach not only surpasses traditional finite-difference time-domain (FDTD) and finite-element
method (FEM) solvers in computational efficiency but also provides insightful information on DFB stack design by
including partially confined radiative waves. We apply this method to investigate fifth-order trapezoidal waveguide
gratings and optimize groove profiles in the context of a single-mode DFB laser, demonstrating its potential for
rapid design and analysis in photonics applications. © 2025 Optica Publishing Group. All rights, including for text and

datamining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Since their introduction, waveguide Bragg gratings (WBGs)
have played a vital role in the development of active and passive
photonic devices. WBGs function by selectively reflecting
certain wavelengths of light in accordance with the grating’s
periodicity. Distributed-feedback (DFB) and distributed Bragg
reflector (DBR) cavity lasers, grating couplers, and filters are just
a few of their many applications in optical tele- and datacom,
sensing, microwave photonics, and more [1–3].

Conventionally, the coupled-mode theory (CMT) was
extensively employed to investigate the performance of WBGs
because it provides an effective way to model light interac-
tion in these gratings by emphasizing the coupling between
waves propagating in opposite directions. In this method, both
fundamental forward- and backward-propagating contra-
guided waves were considered in the calculation of the coupling
coefficient—an essential parameter for evaluating WBG effi-
ciency [4,5]. Streifer et al . significantly improved upon the
CMT by incorporating all interacting waves, including guided
modes, partially confined radiative modes (also termed partial
waves), and diffracted waves [6]. Streifer’s method was super-
seded by the numerical methods, which facilitate the modeling
of WBGs with arbitrary-shaped corrugations [7–9]. However,
the primary challenge associated with numerical methods is the

long simulation time required, resulting in high computational
expense.

Here, we report a newly developed semi-numerical algorithm
to calculate the coupling coefficient of any arbitrary grating,
resting on the CMT formulation introduced by Streifer et al.
[6]. Our algorithm yields precise solutions for geometries
of greater complexity than those examined by Streifer while
requiring minimal computational resources, yielding results
in significantly reduced computational time compared to
mainstream numerical methods. The numerical algorithm is
implemented in Python and available in Ref. [10].

The remaining of the paper is organized as follows. In
Section 2, we present three methodologies for determining
the coupling coefficient of a WBG: (A) the approach proposed
and used in this paper, termed the finite-difference coupled-
mode theory (FD CMT); (B) a numerical scheme based on the
finite-element method (FEM); and (C) that using the finite-
difference time-domain (FDTD) method. Subsequently, a
comparative analysis of the results is reported in Section 3. In
Section 4, we analyze a fifth-order grating, explain the rationale
for this choice, and discuss the optimization of the WBG profile
for single-mode operation in a DFB laser (DFBL). Finally, a
conclusion is given in Section 5.
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Fig. 1. Single period of the studied grating structure.

2. METHODS

A. Finite-Difference Coupled-Mode Theory

1. Finite-DifferenceSolution for Fundamental andPartial
Waves

Figure 1 shows a three-layer slab waveguide featuring an embed-
ded grating at the interface between its core and cover layers.
In the real waveguide structure, it could be related to, the
embedded WBG would be formed by patterned etching and
blanket overgrowth, a standard process used in fabrication of the
DFBLs, allowing for a certain degree of flexibility in terms of the
grating pitch, shape, and depth.

Referring to the near-infrared spectral range, e.g., communi-
cation O- or C-band important for applications, the first-order
grating would require such a lithography with well below
100 nm resolution, which is not commonly available in the
photonic fabs. An alternative would be the higher-order grating,
typically third or fifth order (depending on the etching process),
implementable with a more accessible I-line stepper (365 nm
wavelength).

Following Streifer’s notation, the main transverse electric
field component of the fundamental TE mode ε0(x ) at the
Bragg wavelength λB = 2neff3 is described by the Helmholtz
equation:

d2ε0(x )
d x 2

+
[
k0

2n2(x )− β0
2] ε0(x )= 0, (1)

where k0 = 2π/λB is the free-space wavenumber, β0 =

2πneff/λB is the propagation constant of the TE mode, and
neff is its effective index. For the remainder of this paper, we will
follow the time-harmonic form exp(− jωt) and consider only
the TE mode.

The refractive index n(x ) equals n1, n2, and n3 in the cover
(x < 0), core (g < x < b), and substrate (x > b) regions,
respectively. In the grating region (0< x < g ), the refractive
index varies with both x and z. However, due to its periodicity
in z, the z dependence can be expressed through a Fourier series,
reducing the refractive index to a function of x alone. The details
of this approach are provided in Ref. [6]. Therefore, in the
grating region, the refractive index n(x ) is represented as

ng (x )=

√
n2

2 +

(
n1

2 − n2
2
)

[w2(x )−w1(x )]

3
, (2)

where the groove’s profile is characterized by the functions
w1(x ) andw2(x ), which are, in general, arbitrary. In this paper,
we assume these functions to be linear, resulting in a trapezoidal
profile. This choice allows for direct comparison with the results
reported by Streifer et al . [11] and better aligns with DFB laser
fabrication methods, as etching processes often produce grooves
with linearly sloped walls.

To calculate the effective index of the waveguide with grat-
ing, neff, we employ a method similar to that described in Ref.
[12]. We first discretize the grating region into a series of grids
along the x axis. Figure 2(a) illustrates the 1D refractive index
profile of the structure along the x axis (green lines), where
according to Eq. (2), ng

2(x ) varies linearly in the grating region
(0< x < g ). We discretize the refractive index distribution
ng

2(x ) into M + 1 (M is an integer) equally spaced grids. The
divisions between grids are identified by black dots in Fig. 2(a),
each located at xk+v (v = 1, 2, . . . , M). At each division point,
two distinct slab waveguides are constructed. An example for
x = xk+v is shown in Fig. 2(a): the first waveguide (shown by
red lines) incorporates the cover layer extending into the grating
region with a thickness xk+v . Beyond this point, another layer
extends continuously to the core with the refractive index of
n(xk+v). The second waveguide (shown by blue lines) includes
the core layer extending into the grating region with a thickness
of g − xk+v . Another layer extends from x = xk+v to the cover
at x = 0, with the refractive index of n(xk+v).

It is straightforward to calculate the effective refractive
index of each slab waveguide, as described, e.g., in Ref. [13].
Figure 2(b) shows the effective index of these two waveguides
(red and blue curves) as a function of xk+v for grating System
1, described in Table 1. The neff of grating System 1 is taken
as the average of these values and is found to be 3.5797, which
shows excellent agreement with Ref. [11]. We used intervals of
xk+v − xk+v−1 = 10 nm in this calculation. Smaller intervals
yield more accurate results but increase computation time.
It is crucial to choose intervals small enough for neff to con-
verge, as inaccurate values can significantly impact subsequent
calculations.

After finding neff and β0, the mode functions are expressed
analytically within each layer. The first-order perturbation for
the partial wave εm(x ) is defined by the solution of this equation
[6,11]:

d 2ε(i)m (x )
d x 2

+
[
k0

2n2(x )− βm
2
]
ε(i)m (x )=−k0

2 Am−i (x ) ε0(x ) ,

(3)
where βm = β0 + 2πm/3 represents the propagation constant
of the partial wave of order m(m 6= i); Aq (x ) is the q th Fourier
coefficient of the grating; and i denotes the forward (i = 0)
or backward (i = p) propagation direction of the wave, with
p =−P , where P is the grating order. Aq (x ) is zero everywhere
except for the grating layer, where it equals

Aq (x )=
n f

2
− nc

2

j2πq

[
e−

j2πqw2(x )
3 − e−

j2πqw1(x )
3

]
. (4)

Since Eq. (3) represents an inhomogeneous Helmholtz
equation, numerical methods are preferable for its solu-
tion, especially for arbitrarily shaped grating profiles. Using
our discretization of the structure along the x axis, we
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Fig. 2. (a) Refractive index distribution over the x axis, shown by the green lines. The grating layer is discretized into M + 1 grids, where the
division of grids is identified by black dots at xk+v for v = 1, ... , M. Two waveguides are generated at each dot, shown by the red and blue lines.
(b) Effective index of the waveguides depicted by the red and blue lines in (a), as a function of xk+v .

Table 1. Parameters of the Grating System 1

Parameter w d1 d2 n1 n2 n3 g b 3 λB

Value 0 0.25 0.75 3.4 3.6 3.4 0.2µm 1µm 237.5 nm 850 nm

rewrite the left-hand side of Eq. (3) using a central difference
approximation:

ε(i)m
′′
(x )≈

ε(i)m (x + h)− 2ε(i)m (x )+ ε(i)m (x − h)
h2

, (5)

where

h =
X max − X min

N − 1
. (6)

Here, N is the total number of grids used in the discretization,
and X min and X max are the boundaries of the simulation win-
dow. Thus, we transform the differential equation given by
Eq. (3) into N linear equations of the form

ε(i)m l+1 − 2ε(i)m l + ε
(i)
m l−1

h2
+
(
k0

2n2 (xl )− βm
2) ε(i)m l

=−k0
2 Am−i (xl ) ε0(xl ) , (7)

where 1≤ l ≤ N (xl s are shown in Fig. 1). There are N equa-
tions with N + 2 unknowns, including ε(i)m 0 and ε(i)m N+1, which
can be eliminated by substituting appropriate boundary con-
ditions to terminate the computational domain at X min and
X max.

Given our emphasis on modeling partial waves (radiative
modes), we apply radiative boundary conditions at X min and
X max by defining plane waves propagating outward from the
domain in the ±x directions at these locations. These condi-
tions provide two additional equations, which allow us to relate
ε(i)m 0 and ε(i)m N+1 to the fields within the domain. The radiative
boundary conditions are defined as follows:

ε(i)m 1 = ε
(i)
m 0e− j k1h , (8a)

ε(i)m N = ε
(i)
m N+1e− j kNh , (8b)

where k1 =
√

k0
2n1

2 − βm
2 and kN =

√
k0

2n3
2 − βm

2 are the
transverse components of the plane waves’ wavenumbers.

2. ComputingStreifer’sCoefficients

Once the ε(i)m are determined, the partial wave parameters
ζ1,...,4 introduced by Streifer et al . [6] can be readily calculated.
These parameters, extensively discussed in Refs. [6,11], are
summarized as follows:

ζ1 =
∑∞

q=−∞
q 6=0,−p

η
(0)
q ,−q , (9a)

ζ2 =
∑∞

q=−∞
q 6=0,−p

η
(p)
q ,−q , (9b)

ζ3 =
∑∞

q=−∞
q 6=0,p

η
(p)
q ,p−q , (9c)

ζ4 =
∑∞

q=−∞
q 6=0,p

η
(0)
q ,p−q , (9d)

where

η(i)r ,s =
k0

2

2β

∫ g
0 Ar (x ) ε0 (x ) ε(i)s (x ) dx∫

∞

−∞
ε0

2 (x ) dx
, (9e)

κp =
k0

2

2β

∫ g
0 A p (x ) ε0

2 (x ) dx∫
∞

−∞
ε0

2 (x ) dx
. (9f)

Here κp is the coupling coefficient. In general, including more
partial terms improves the accuracy of the results, though at the
cost of increased computational time. However, per our expe-
rience, the partial terms have negligible effect when |q |> P
(q 6= 0). The coupling coefficient of the higher-order grating,
incorporating contributions from partial terms ζ1,...,4, can be
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Fig. 3. Dominant orders of partial waves (legends show the order
m). The inset presents the geometry of System 1, rigorously discretized
by the FEM solver.

described using an effective coupling coefficient [14]:

κeff =
√
(κp
∗ + ζ2)(κp + ζ4). (10)

B. Finite-Element Method

We use the commercial FEM software, COMSOL v6.1 [15], to
analyze an example triangular-profiled grating, labeled System 1
and described in Table 1. FEM solvers enable numerical calcu-
lations of neff, ε0(x ), and ε(i)m (x ) through a multistep modeling
process.

First, a wave equation study using the RF module is imple-
mented to solve Eq. (1) numerically. The refractive indices
and geometrical parameters of a WBG aligned with System 1
are defined. The inset of Fig. 3 shows the 1D configuration of
the system as defined in the Geometry section of COMSOL.
The simulation box is large enough and surrounded by per-
fectly matched layer (PML) boundary conditions to prevent
reflections from the walls. Using the computed values of neff

and ε0(x ), we implement a general type of partial differential
equation (PDE) from the Mathematics module,

∇ ·
(
−c∇ε(i)m (x )

)
+ aε(i)m (x )= f , (11)

to numerically calculate the partial waves. Equation (11) is
defined by

c =−1/S (x ) , (12)

a =
(
β2

0 − β
2
m

)
S (x ) , (13)

f =−k2
0 Am−i (x ) ε0 (x ) S (x ) , (14)

where c , a , and f are the diffusion coefficient, the absorp-
tion coefficient, and the source term, respectively. The PML
correction factor is

S (x )= 1+ i
σ (x )√
|β2

0−β
2
m
|

, (15)

whereσ(x ) is the stretching factor [16].
Figure 3 shows the E-field distribution of the dominant

orders of partially radiative waves across the waveguide in the
forward setup (i = 0). The sudden drop of the fields at 15µm is

due to enforcing PML boundaries. It is obvious that the partial
waves can constructively or destructively interact with guided
modes while decaying as they approach the modified absorber
walls. At the end of this step, one can recall Eqs. (9) and (10) to
calculate the effective coupling coefficient of System 1.

C. Finite-Difference Time-Domain

Due to the periodic modulation in gratings, a range of wave-
lengths surrounding the Bragg wavelength λB will not be
transmitted at the output of the gratings. This range is termed
the stopband, and its width is referred to as the bandwidth. The
bandwidth of a grating can be theoretically obtained using the
CMT as [17]

1λ=
λB

2

Lngroup

√
1+

(
L |κeff|

π

)2

, (16)

where ngroup represents the group index. According to Eq. (16),
we can calculate the coupling coefficient by knowing the band-
width.

One can utilize the FDTD technique to carry out this calcu-
lation. By modeling a finite-length grating bounded by PML
conditions and launching the fundamental mode of the unper-
turbed waveguide at the input of the grating, the reflectance
and transmittance of the waveguide mode can be computed.
This is achieved by implementing frequency-domain monitors
located at the input and output of the grating, respectively. Such
simulations have been elaborated [18,19].

However, simulations of finite-length gratings are compu-
tationally expensive and time-consuming. A more efficient
FDTD approach has been reported [20], wherein an infi-
nitely long grating is modeled by simulating only one unit cell
and applying Bloch boundary conditions along the propaga-
tion axis. We use this technique in the commercial software
Lumerical FDTD [21] to determine 1λ and subsequently
calculate |κeff|using Eq. (16). The fundamental mode of the slab
waveguide serves as the source for our simulations. A mode pulse
of a few femtoseconds (consecutively, with a broad spectrum) is
launched into the grating. This pulse propagates to the output
boundary, and due to the periodicity of the system, re-enters
from the input boundary. This process repeats until the simula-
tion time finishes or the energy within the simulation window
reaches a predefined threshold. A frequency-domain monitor,
positioned perpendicularly to the propagation direction within
the simulation window, captures the wave spectrum transmitted
through the system. The normalized square of the transmitted
field, or transmittance, is illustrated in Fig. 4 for the grating
System 1 for various simulation durations. It is evident that as
the simulation time increases, the width of the peaks narrows,
and the peaks become more distinguishable. Weak gratings have
narrow bandwidths, and their peaks are closer to each other,
therefore requiring more simulation time.

The bandwidth and the Bragg wavelength can be determined
from the positions of these two peaks. By reformulating Eq. (16)
with the length approaching infinity, the magnitude of the cou-
pling coefficient can be deduced from

|κeff| =
1λπngroup

λB
2 . (17)
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Fig. 4. Transmittance for different simulation times (from
Lumerical FDTD). The inset shows calculated |κ eff| as a function
of the simulation time.

The inset of Fig. 4 plots the variation of |κeff| as a function of
the simulation time. For materials with the refractive indices
that are weakly dependent on the wavelength (such as III–V
semiconductors in the infrared), ngroup can be replaced by neff

(as was done in this calculation). The convergence becomes
evident with increasing simulation time, suggesting that short
simulation times may yield inaccurate results.

3. COMPARISON OF METHODS

In this section, the coupling coefficients of the fundamental
mode obtained by FD CMT, FEM, and FDTD are compared
to each other and to the data reported in Ref. [13] for the grating
structure of System 1, as a function of d1 (d2 = 1− d1). In
FDTD simulations, we used 40,000 fs for the simulation time
with a time step of 0.015 fs and a uniform mesh size of 3 nm.
The FD CMT and FEM simulations were conducted with
−8< q < 7 and a mesh size of 3 nm for discretization. This
mesh size was selected to ensure the convergence, as discussed
later in this section.

Figures 5(a) and 5(b) plot |κeff| and ∠κeff, respectively, as
functions of d1. Overall, good agreement exists between all three
methods. The |κeff| is minimum when the grating is symmetric
and reaches its maximum at d1 = 0.15 and 0.85. This triangled
grating exhibits a small phase regardless of d1, suggesting min-
imal radiation loss. The highest phase is achieved where |κeff|

is minimum. An important feature of a grating having a large
phase of κeff is its ability to increase mode selectivity. This aspect
will be discussed further in Section 4.

Table 2 compares the computational times of the three
methods for the grating System 1. The computational power
remains consistent across all cases, on an Intel Core i7-10700
CPU at 2.9 GHz processor and 32 GB of RAM. The efficiency
of the FD CMT compared to other methods is remarkable.

Table 2. Comparison of Computing Time of Different
Simulation Methods

Method FD CMT FEM FDTD

Computing time (s) ∼10 ∼900 ∼600

The primary reason for the FD CMT’s superior efficiency over
the FEM lies in how each solver handles meshing. The FD
CMT applies boundary conditions primarily at the edges of
the overall problem domain to enforce physical constraints.
In contrast, the FEM discretizes problem by thousands of free
triangular elements, solving the solution within each element
and ensuring convergence via regular iterative refinement.
Meanwhile, the FDTD, being an inherently time-domain
solver, requires both spatial and temporal stepping, which
makes it a time-consuming method.

For the FEM, note that the actual simulation time is signifi-
cantly longer than the listed computational time due to the
need for identical data mapping between different modules in
COMSOL.

Figure 6(a) illustrates the convergence of |κeff| for each
method as the mesh size is reduced from 45 nm. The FDTD
method decreases in steps of 3 nm, while the FEM method
is refined in steps of 10 nm. The FD CMT method is shown
with continuous lines refined in 1 nm steps. Other simulation
settings are as discussed above. In the smaller mesh size range
(down to 10 nm), all the methods converge to the same value.
However, as the mesh grid size increases, both the FDTD and
FD CMT methods yield similar results due to their identical
meshing principles along with a decrease in the simulation time.
In contrast, the FEM shows better overall convergence owing to
the higher accuracy of finite-element meshing, albeit at the cost
of longer simulation times.

Figure 6(b) shows the convergence of |κeff| as a function of the
number of partial modes included in the FD CMT simulation.
The partial modes, represented on the horizontal axis, are sym-
metrically distributed with respect to q = 0, excluding q = 0
itself. For example, including two modes corresponds to q rang-
ing from −1 to 1. A value of 0 on the horizontal axis indicates
that no partial mode is included. As discussed in Section 2.A.2,
|κeff| converges when the summations in Eq. (9) incorporate
partial waves for |q |> P (here, P = 2).

4. OPTIMIZATION OF THE WBG FOR A
SINGLE-MODE DFBL

In the DFBL design, commonly used first-order gratings have
the advantage that guided waves are decoupled from partial

Fig. 5. Comparison of the (a) amplitude and (b) phase of the effective coupling coefficient κeff obtained using different methods.
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Fig. 6. (a) Coupling coefficient |κ eff| as a function of the mesh size
used in FD CMT, FEM, and FDTD. (b) |κ eff| as a function of the
number of partial modes included in the FD CMT.

waves, so no radiation loss occurs in this case. This minimizes
the threshold current and maximizes the slope efficiency, but it
makes the laser susceptible to mode hopping due to the degen-
eracy of the longitudinal modes. In a DFBL with a higher-order
grating, the radiation loss associated with the resonant cou-
pling between guided and partial waves increases the threshold
current and reduces the slope efficiency, but it has the advan-
tage of breaking longitudinal mode degeneracy [22–25]. To
demonstrate the mode selectivity in higher-order gratings, we
optimize a fifth-order grating in this section for the single-mode
operation. We chose a fifth-order grating for three reasons: first,
while second- and third-order gratings have been extensively
studied [8,9,23,25,26] and fourth-order to some extent [27,28],
fifth-order gratings remain relatively unexplored. Second, in
the O-band, a fifth-order grating has a pitch of∼1µm, which is
well-suited for fabrication using inexpensive photolithography
techniques, e.g., based on a mask aligner. Third, fifth-order
gratings inherently have many radiative modes, making them
good candidates to test the accuracy of our FD CMT scheme.

Table 3 describes the parameters of the model structure
depicted in Fig. 1 used for an illustration of how the WBG could
be optimized for a single-mode DFBL operation. It is repre-
sentative of an InP-based DFBL with the overgrown WBG. By
varying the values ofw and d (= d1 = d2), the trapezoid grating
profile may be changed to rectangular or triangular. Varying g
adjusts the depth of the grating. The optimization procedure
is as follows: we varyw from 0 to 1 (in a step size of 0.02) and d
from 0 to (1−w)/2 (in a step size of 0.02). Increasing d further
will make the groove profile resemble an outward trapezoid,
which is unlikely to occur in fabrication. Therefore, we excluded
such cases from our analysis.

We vary g from 0.25 to 0.75 µm in a step of 0.25 µm. The
optimization goal for such a structure is to achieve a single-mode
spectrum while maintaining a high coupling coefficient magni-
tude. The coupling strength of a grating is commonly assessed

Table 3. Parameters of the Grating System 2

Parameter n1 n2 n3 P b λB

Value 3.2 3.3 3.2 5 1µm 1300 nm

using the product of the coupling coefficient and the length,
denoted |κeff|L . A strong grating is characterized by |κeff|L > 1,
indicating that for a typical laser length of 1 mm, the value of
|κeff| should be at least 10 cm−1. Thus, in our optimization
algorithm, we assume a 1 mm long laser and only consider the
geometries that result in |κeff| values greater than 10 cm−1.
We select the one with the largest phase from the resulting
geometries to achieve single-mode performance.

Figures 7(a) and 7(b) depict the amplitude and phase, respec-
tively, of the coupling coefficient at a wavelength of 1300 nm
computed using the algorithm discussed in Section 2.A. The
data points with |κeff|< 10 cm−1 are omitted for clarity.
The simulation was conducted with the following settings:
X min =−3 µm, X max = 3 µm, −7< q < 7, and a step size of
3 nm for the discretization.

Upon initial observation, it is evident that the amplitude
peaks coincide with minima in phase, and conversely, minimum
amplitudes correspond to larger phase values. Deeper gratings
generally exhibit higher amplitude and phase. It is important
to note that the selection of groove shapes should be tailored to
the specific application, as different applications may require
different characteristics. However, in our case, we prioritize
gratings with the largest phase.

Radiating waves interact with the contradirectional guided
waves in a grating structure, partially coupling back into the
laser waveguide. This interaction decreases or increases the
guided wave intensity, effectively inducing additional loss or
gain to the guided wave. From Fig. 7(b), we see that the sign of
the phase of the coupling coefficient depends on the grooves’
profile and can be either positive or negative, corresponding
to partial gain or loss coupling, respectively. To achieve natu-
ral single-mode behavior in DFBLs, it is desirable to have a
phase of large magnitude. According to Fig. 7(b), the largest
phase is achieved at w= 0.04, d = 0.32, and g = 0.75 µm,
corresponding to our optimized design.

To evaluate the lasing condition of the WBGs, we need
to solve the coupled wave equations for the forward R and
backward S traveling waves [11]:

d R
dz
− (α + iδ + iζ1)R = i

(
κ∗p + ζ2

)
S, (18a)

−
d S
dz
− (α + iδ + iζ1)S = i

(
κp + ζ4

)
R, (18b)

where δ = β − β0 represents the Bragg detuning parameter and
α represents the sources of loss and gain, expressed as

α = 0g mat − αsca − αabs, (19)

where αabs denotes the mode’s loss due to material absorp-
tion, here assumed to be 0. The term αsca refers to the scattered
loss, represented by the normalized radiated power of partial
waves escaping from the cavity and dissipating in the cover and
substrate regions [6]:
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Fig. 7. (a) Amplitude and (b) phase of the effective coupling coefficient, κeff, as a function of d ,w, and g .

Fig. 8. Schematic of a DFB longitudinal cross section with forward
R and backward S traveling waves.

αsca =

∑
m

Re

{√
k2

0n2
c − β

2
m |εm (0)|

2
+

√
k2

0n2
s − β

2
m |εm (b)|

2

}

/

(
β0

∫
∞

−∞

|ε0 (x )|
2dx

)
.

(20)

For our optimized structure, αsca is 8.14 cm−1. The term
0g mat represents the modal gain, where 0 is the fraction of
mode power overlapping with the gain region and g mat is the
material gain. The parameters α and δ are inherently coupled
and typically solved numerically as pairs. We find these pairs
numerically, based on the formulation discussed in Ref. [29].
To do so, we first define our boundary conditions. In our DFB
structure, we assume that the facets at z= 0 and z= L are
cleaved and have the reflectivity of r , i.e., R(0+)= r S(0+) and
S(L−)= r R(L−), as illustrated in Fig. 8. Figure 9 presents the
paired eigenvalues, δ and α, at L = 1 mm and r = 0.28 (which
is a typical value for an air/III–V material interface). These
eigenvalue pairs determine the threshold characteristics of all
potential lasing modes.

From Fig. 9, the shorter wavelength side of λB (right side of
δ = 0) exhibits the lowest threshold gain (αth = 1.23 cm−1),
indicating it is the lasing mode. This notable disparity in thresh-
old gain between this mode and its adjacent modes ensures a
pronounced single-mode behavior and effective suppression of
side modes. By substituting this value into Eq. (19), we find that
this laser requires a modal gain 0g mat of 9.37 cm−1 to reach the
threshold gain. g mat depends on the material system of the active
region and the carrier injection level. For a typical III–V gain
medium with multiple quantum wells, g mat can reach values
beyond 1000 cm−1. 0 is highly dependent on the waveguide
geometry and typically is around 0.1 [30,31].

Fig. 9. Threshold characteristics of all potential lasing modes of
System 2 for a cavity length of L = 1 mm and r = 0.28.

Fig. 10. Subthreshold emission spectrum of the optimized DFB
structure with a groove profile defined by w= 0.04, d = 0.32, and
g = 0.75µm.

Figure 10 presents the emission spectrum derived using the
analytic method described in Ref. [32], with α being just below
theαth. The spectrum reveals a pronounced natural single-mode
behavior at δL ≈ 2, consistent with the observations in Fig. 9.

5. CONCLUSION

We developed a semi-numerical algorithm based on the previ-
ously established coupled-mode theory to investigate waveguide
gratings. We achieved excellent agreement with other numeri-
cal methods offered by commercial software packages. Our
approach exhibits significantly faster computational perform-
ance, making it suitable for optimizing devices with extensive
parameter sweeps. Leveraging this method, we investigated
a generic InP-based grating and optimized it for single-mode
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DFB operation, which is crucial for applications that demand
a stable and high-quality signal output. The optimization,
involving over 2000 different geometries using the FD CMT,
would have been impractical to complete within a comparable
timeframe using the FEM or FDTD.
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