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Spin-valley qubits in gated quantum dots in a single layer of transition metal dichalcogenides
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Jarosław Pawłowski,2 and Paweł Hawrylak1

1Department of Physics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
2Department of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wrocław, Poland
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We develop a microscopic and atomistic theory of electron-spin-based qubits in gated quantum dots in a
single layer of transition metal dichalcogenides. The qubits are identified with two degenerate locked spin and
valley states in a gated quantum dot. The two qubit states are accurately described using a multimillion atom
tight-binding model solved in wave-vector space. The spin-valley locking and strong spin-orbit coupling result
in two degenerate states, one of the qubit states being spin down located at the +K valley of the Brillouin zone,
and the other state located at the −K valley with spin up. We describe the qubit operations necessary to rotate the
spin-valley qubit as a combination of the applied vertical electric field, enabling spin-orbit coupling in a single
valley, with a lateral strongly localized valley-mixing gate.
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I. INTRODUCTION

There is currently interest in developing quantum circuits
based on electron spin qubits [1–9] in gated quantum dots
in gallium arsenide and silicon [10–14]. In these structures,
electrons are localized in a volume containing millions of
atoms, hence the nuclear spins and atomic vibrations con-
tribute to the decoherence of electron spins. Recent realization
of semiconductor layers with atomic thickness [15–26] opens
the possibility of confining single electrons to few-atom-thick
layers, potentially significantly increasing the operating tem-
perature and the coherence of electron spin qubits.

Recently, quantum dots (QDs) in transition metal dichalco-
genides (TMDCs), graphene, and bilayer graphene have been
realized [21,27–31] by creating electrostatic confinement with
lateral metal electrodes [30–35]. Several groups reported the
creation of finite-size electron droplets using metallic gates
[30,31,36]. Gated quantum dots combined with large trion
binding energies allowed for electrical probing of excitons in
TMDC QDs [30,31,36–38]. For example, a local tunable con-
finement potential has been realized by Kim and co-workers
[30], and gate tuning of QD molecules has been shown by Guo
and co-workers [39]. There has also been significant progress
in theoretical understanding of TMDC QDs. Stability and
electronic properties of small QDs with various composition,
orientation, and edge type have been studied within density
functional theory (DFT) [40–45]. In particular, Galli and co-
workers [45] studied the electronic properties of triangular
MoS2 quantum dots as a function of the number of layers and
predicted a transition to a direct gap semiconductor in a single
layer.

Nevertheless, ab initio approaches are limited to small
structures, and to describe quantum dots with lateral sizes
up to tens of nanometers, one can make use of hybrid

DFT-based tight-binding models [46–57]. Using a three-band
tight-binding model limited to metal orbitals, Peeters, and co-
workers analyzed the effect of quantum dot shape and external
magnetic field on the single-particle energy spectrum [58,59].
Using an atomistic tight-binding approach, spin-valley qubits
have been described in small quantum dots by Bednarek
and co-workers [60,61], Szafran and co-workers [62–64], and
Guinea and co-workers [65]. Using such an approach, two
valley-qubit operations have also been recently proposed by
some of us [66]. In order to understand the size dependence
of the electronic states in quantum dots for realistic sizes
involving millions of atoms, k · p and effective massive Dirac
fermion models were also applied [67–72].

In our previous work, an ab initio–based tight-binding
model combining metal and chalcogen orbitals, applicable to
multimillion atom quantum dots in TMDCs, has been devel-
oped [73]. We note that in a tight-binding model the correct
level degeneracies occur, but their direct identification with
valleys is difficult. By working in reciprocal space, the valleys
were explicitly taken into account. The effect of valley, spin,
and band nesting on the electronic properties of gated quan-
tum dots in a single layer of transition metal dichalcogenides
was described [74], along with valley- and spin-polarized
broken-symmetry many-body states discussed in Ref. [75].
It was shown that the lowest electronic state confined in a
quantum dot is a doublet of spin and valley locked states.
Hence, such a doublet could serve as a qubit. In order to
realize a spin-valley qubit, a way to control spin and valley
properties of electrons in these QDs is needed. Several means
of manipulating the valley index in quantum dots have been
already studied: strain [65], magnetic field [67,69,70], and
coupling to impurity [70]. Valley mixing by the confining
potential has also been analyzed by Yao and co-workers [68]

2469-9950/2021/104(19)/195412(7) 195412-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9677-5403
https://orcid.org/0000-0003-4505-1998
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.195412&domain=pdf&date_stamp=2021-11-10
https://doi.org/10.1103/PhysRevB.104.195412
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FIG. 1. (Top) A schematic view of the device. Quantum dot in
monolayer TMDC is induced by the top gate (gold), and highly
localized potential necessary for valley mixing is controlled here by
the scanning tunneling microscope tip. Additional vertical electric
field is induced by potentials applied to two graphite layers. (Bottom)
Schematic view of the spin-valley qubit (red arrow).

and the magnetic control of the spin-valley coupled states in
TMDC QDs has been shown by Qu and co-workers [71,72].

In this paper, building on our previous work, we expand our
microscopic theory of electron spin-valley qubits and provide
a prescription of how to manipulate the two qubit states. The
microscopic tight-binding model developed here is suitable
for accurate description of multimillion atom nanostructures
compatible with existing experiments. The two degenerate
qubit states, belonging to the two nonequivalent valleys, each
with the opposite spin, are built out of conduction band states
of even parity with respect to the metal plane. The rotation
of the qubit, the logical σx operation, requires simultaneous
transition between opposite spin states in each valley and
between the two nonequivalent valleys. The understanding
of the orbital composition of conduction band states as a
linear combination of even parity metal orbitals and even
parity sulfur dimer orbitals allows us to show that the qubit
rotation is accomplished by applying both a time-dependent
vertical electric field and a time-dependent highly localized
lateral potential. The electric field couples primarily to the
two sulfur layers, and activates odd conduction bands, which
enables in turn spin flips on metal atoms due to the spin-orbit
interaction. The admixture of an opposite-spin orbital and
application of a lateral local potential enables transition to the
opposite valley and spin qubit state. This process is illustrated
in Fig. 1. Figure 1 shows a cross section of a schematic device
consisting of a single TMDC layer, with metallic gates (shown
in yellow) producing a lateral potential confining a single
electron to a quantum dot in a single TMDC layer, illustrated
with a thick arrow below. In addition, a metallic vertical gate,
implemented here with two graphene layers, generates an
on-demand vertical electric field. The local gate, implemented
here with a scanning tunneling microscope (STM) tip, gen-
erates an on-demand valley-mixing potential. The suggested
setup shown in Fig. 1 is compatible with experimental designs
and implementation of gated quantum dot in a single layer of
WSe2 [76]. We will show that turning these two gates on for
a finite time rotates the spin-valley qubit from logical qubit 0
to logical qubit 1.

The paper is organized as follows. In Sec. II, we describe
logical quantum bits encoded in the two lowest degenerate
states of an electron confined in a lateral gated quantum dot in
TMDC. In Sec. III, we describe the effect of two external gates
allowing for flipping of the spin and flipping of the valley,
necessary for logical qubit quantum operations. In Sec. IV,
we summarize our results.

II. LOGICAL QUANTUM BITS ENCODED IN
ELECTRONIC STATES OF AN ELECTRON

CONFINED IN A LATERAL GATED QUANTUM DOT

Here we identify and analyze the logical quantum bits
encoded in quantum states of an electron in a gated quantum
dot in a single layer of TMDC as shown in Fig. 1. This is
necessary, since valleys and the spin-orbit coupling prevent us
from identifying qubits with electron spin states only.

Following Ref. [74], the Hamiltonian of an electron in
a single layer of TMDC is a sum of the bulk Hamiltonian
Hb and quantum-dot confinement potential VQD [73,74]. The
potential VQD(�r) is approximated here by a Gaussian potential
VQD(�r) = −V0 exp(−r2/R2

QD), where V0 is the potential depth
and RQD is the quantum dot radius. The electron quantum
dot wave function |�s〉 for the electron state s satisfies the
Schrödinger equation [73,74]:

(Hb + VQD(�r))|�s〉 = Es|�s〉. (1)

As explained in Ref. [74], we define a large computational
rhombus consisting of millions of metal atoms (sublattice A),
and two layers of upper and lower chalcogen atoms (sub-
lattice B). We retain only even metal orbitals and form an
even combination of the upper and lower chalcogen p orbital.
We wrap the computational rhombus on a torus, apply the
periodic boundary conditions, and obtain a set of allowed k
vectors over which we diagonalize the bulk Hamiltonian Hb.
The sublattice A wave functions are expressed as a linear
combination of even metal d orbitals, with angular momentum
two and md = 0,±2 and an even combination of two, top
and bottom, sulfur dimer p orbitals with angular momentum
one and mp = 0,±1. The conduction band (CB) even wave
function at each wave vector is a linear combination of simple
even Bloch functions on the metal and sulfur sublattices l
(l = 1, . . , 6),

∣∣φCB,ev
kσ

〉 =
6∑

l=1

ACB,ev
kσ,l

∣∣φev
k,l

〉 ⊗ |χσ 〉, (2)

where |χσ 〉 represents the spinor part of the wave function and

∣∣φev
k,l

〉 = 1√
NUC

NUC∑
�Rl =1

ei�k �Rl ϕev
l (�r − �Rl ) (3)

are simple Bloch functions built with even orbitals ϕev
l . NUC

is the number of unit cells and Rl defines the position of even
orbitals in the computational box. By diagonalizing the 6 by
6 bulk Hamiltonian we obtain the bulk even energy bands
ECB,ev

kσ
and wave functions ACB,ev

kσ,l . Figure 2 shows the energy
ECB

kσ of the lowest even conduction band (CB) as well as the
map of the conduction band energies on the rhombus of the k
space over which computations are carried out, including the
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FIG. 2. Bulk band structure of MoS2. (a) Blue lines correspond
to energy levels of even orbitals and red lines correspond to energy
levels of odd orbitals. (b) Lowest conduction band energy levels on
allowed values of k points. +K and −K are global valley minima of
the conduction band while the three +Q and −Q points correspond
to local minima of the conduction band states.

+K and −K valley minima. The figure also contains the even
conduction bands at a higher energy, to be discussed shortly.

In the next step we expand the quantum dot wave function
|�s〉 in terms of even the lowest energy conduction band states
given by Eq. (2),

|�s〉 =
∑

�k

∑
σ

Bs,CB,ev
�kσ

∣∣φCB,ev
�kσ

〉
. (4)

The electron Schrödinger equation now converts to an integral
equation for coefficients Bs,CB,ev

�kσ
,

ECB,ev
qσ Bs,CB,ev

qσ +
∑
�kσ ′

Vq,kAqσ,kσ ′Bs,CB,ev
kσ ′ = EsBs,CB,ev

qσ . (5)

We see that the quantum dot confining potential in wave vector
space turns out to be a product of the lateral confinement Vq,k

and band contribution Aqσ,kσ ′ , with

Vq,k = −V0
S

4π
R2

QD exp

(
− (k − q)2

4
R2

QD

)
(6)

being the Fourier transform of the confining potential, with
RQD being the radius of the quantum dot, V0 −the depth of the
gate potential, and S −the reciprocal lattice unit-cell area. The
band structure contribution to the scattering potential Aqσ,kσ ′

is given by

Aqσ,kσ ′ =
∑

l

(
ACB,ev

qσ,l

)†(
ACB,ev

kσ ′,l

)
. (7)

Solving the integral equation, Eq. (5), we obtain the quan-
tum dot energy levels and wave functions. Figure 3 shows
the energy levels of an electron confined in our quantum dot.
We see that the levels are grouped into shells. The lowest
energy shell consists of four low-energy states, related to
two spin, up and down, states and two valleys, +K and −K .
The four states are split into pairs of levels by the spin-orbit
interaction. The splitting, fully characterized in Ref. [74], is
limited by the bulk value. From ab initio calculations, the
splitting is 3 meV for MoS2 but splitting is greater than room
temperature, 30 meV, for WSe2 [16,74]. We hence identify the
two logical qubits, |0〉 and |1〉, with the two lowest energy lev-
els, |0〉 = | + K, σ = ↓〉 and |1〉 = | − K, σ = ↑〉, shown in
Fig. 3. Additionally, the energy of the s states depends on the

FIG. 3. QD spectrum. Harmonic oscillator shell-like electronic
states are formed due to the applied negative gate potential. Two
qubit states are indicated, well isolated from the rest of the energy
levels. Inset shows the highly localized qubit wave function in the k
space.

depth of the confining potential of the order of 300 meV used
here. This guarantees stability of the qubit. The dependence
of the energy separation of the qubit states from excited states
on potential depth and radius were already addressed by our
previous work [74]. We want to note that, in our unpublished
work we also studied the effect of impurity on the qubit states
in the valence band. We found that the impurity shifted the
energy of qubit states but preserved the valley-spin locking
and degeneracy.

III. SINGLE-QUBIT OPERATIONS

In this section we discuss the necessary steps for single
logical qubit manipulation. Before rotating qubit states, the
degeneracy of the valley-spin locked system should be lifted
so that one can use the doublet state as a qubit, as can be
seen from Fig. 3. The degeneracy of the spin-valley locked
system can be lifted by applying a magnetic field (for σz op-
eration), which is known as valley-Zeeman splitting [77,78].
This procedure will prepare and initialize the qubit states for
σx rotation. Hence, in order to rotate the qubit we need to be
able to turn on both the σz and σx operations in the space of
the logical qubit. To rotate the levels we need to be able to turn
on the σx operation. This operation needs to flip the logical
qubit, i.e., induce a transition changing the spin and changing
the valley. We will discuss this operation as composed of two
steps, spin flipping and valley flipping.

A. Vertical gate-valley conserving spin rotations

Let us discuss how we can rotate the spin of an electron in
a logical qubit |0〉 = | + K, σ = ↓〉 without changing the val-
ley. We will accomplish this by turning on a vertical electric
field Ez. The vertical electric field implies a higher potential
VE/2 on the upper sulfur layer and a lower potential −VE/2 on
the lower sulfur layer, with zero potential on the metallic layer.
The applied bias acts primarily on sulfur layers and mixes the
even combination of sulfur orbitals with an odd combination
of sulfur orbitals, and this mixes the even and odd conduction
bands. Hence we need to determine the electronic states which
are odd with respect to the metallic layer. There are two odd
metal orbitals, l = 2, md = ±1 on the sublattice A, and three
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odd sulfur dimer mp = 0,±1 orbitals on the sublattice B. We
expand the odd wave function in terms of odd metal and odd
chalcogen dimer wave functions as

∣∣φCB,odd
kσ

〉 =
5∑

l=1

ACB,odd
kσ,l

∣∣φodd
k,l

〉 ⊗ |χσ 〉. (8)

The odd orbital Hamiltonian is obtained and diagonalized at
each wave vector k. The lowest odd conduction band energy
ECB,odd

k (red) is plotted in Fig. 1 together with the energy
of even conduction bands (blue). We see that the odd band
energy is higher than the even band by approximately 1 eV.
In order to understand all the steps we now retain only the
lowest even and odd conduction band states and include both
the spin-orbit coupling VSO and the odd-even orbital coupling
VE by the applied electric field. In the presence of the electric
field and the spin-orbit coupling, the bulk Hamiltonian can
now be written in a block form as

H =

⎡
⎢⎢⎣

H ev
↓ V ev-odd

E 0 VSO↓↑
Hodd

↓ VSO↓↑ 0
H ev

↑ V ev-odd
E

Hodd
↑

⎤
⎥⎥⎦. (9)

We assumed here that the applied electric field E created
negative and positive voltages applied to lower and upper
chalcogen atoms of the bulk TMDC layer, respectively. The
spin-orbit coupling in turn couples spin up and down states
with even and odd metal orbitals, hence the electric field and
the spin-orbit coupling couple even and odd band states.

The vertical gate generates a laterally homogeneous elec-
tric field which couples odd and even orbitals of each
chalcogen dimer. This translates into coupling of odd and even
conduction bands at a given wave vector k. We assume the
voltage V̂E (z) due to applied electric field such that −VE/2
is the voltage applied on the chalcogen atom located on the
lower layer, VE (z = 0) = 0 is the voltage on the metal layer,
and +VE/2 is the voltage on the chalcogen atom located on
the upper layer of TMDC. The matrix element coupling the
odd and even bands at each wave vector is given by

V ev-odd
E = 〈

φ
CB,odd
kσ

∣∣V̂E

∣∣φCB,ev
kσ

〉
= 1

2NUC

∑
�RB′ , �RB

∑
mp′ ,mp

=0,±1

(
ACB,odd

�kσ,mp′

)∗(
ACB,ev

�kσ,mp

)
ei�k( �RB− �RB′ )

×
∫∫

dzd2r
[
ϕu

mp′
(z, �r − �RB′ ) − ϕd

mp′
(z, �r − �RB′ )

]∗

× V̂E (z) × [
ϕu

mp
(z, �r − �RB) + ϕd

mp
(z, �r − �RB)

]
.

(10)

We see that the only contribution to the matrix element
comes from chalcogen orbitals on top (up) and bottom
(down) chalcogen layers. The main contribution to this ex-
pression comes from combined orbitals on upper and lower

layers:

V ev-odd
E = 1

2NUC

×
∑
�RB′ , �RB

∑
mp′ ,mp

=0,±1

(
ACB,odd

�kσ,mp′

)∗(
ACB,ev

�kσ,mp

)
ei�k( �RB− �RB′ )

×
[ ∫∫

dz d2rϕu∗
mp′

(z, �r− �RB′ )

(
VE

2

)
ϕu

mp
(z, �r− �RB )

−
∫∫

dz d2rϕd∗
mp′

(z, �r− �RB′ )

(
−VE

2

)
ϕd

mp
(z, �r− �RB)

]
.

(11)

The integrals over r and z give δ(RB, R′
B) and δ(mp, m′

p). It
is now clear that the final approximate result can be written
simply as

V ev-odd
E = VE

2

∑
mp=0,±1

(
ACB,odd

�kσ,mp

)∗(
ACB,ev

�kσ,mp

)
. (12)

We see that the electric field couples odd and even conduction
bands and the magnitude of that coupling is proportional
to a product of odd and even band amplitudes A at each
wave vector k, summed over all mp orbitals. However, the
odd and even conduction bands have a different composition
of chalcogen and metal orbitals at the bottom of the +K
valley. The selection rule derived in Ref. [73] implies that
metal md and chalcogen mp orbitals satisfy the selection rule
1 + mp − md = 0,±3. Hence the even band is built of md = 0
and mp = −1 orbital but the odd band is built on the md = −1
and mp = +1 chalcogen orbitals. Chalcogen orbitals in the
odd and even bands are different and the coupling strength,
a product of the same mp orbitals at the bottom of the +K
valley, vanishes. Hence the mixing of even and odd bands due
to the vertical electric field has a nontrivial dependence on
the wave vector and so does the contribution to quantum dot
states.

The mixing of odd and even bands for the same spin is only
the first step in the spin rotation. Let us now turn our attention
to the second step, induced by the spin-orbit coupling. The
spin-orbit interaction is acting much more strongly on metal
orbitals than calchogen orbitals. Starting with the even md = 0
spin-down orbital, the spin-orbit interaction couples this state
with the odd, md = −1 and spin-up orbital. Hence it is clear
that the odd orbitals are needed to flip the spin. We can
write spin-orbit interaction mixing the lowest odd and even
conduction bands on metal atoms (sublattice A) as

VSO↓↑ = 〈
φ

CB,ev
k↓

∣∣V̂SO

∣∣φCB,odd
k↑

〉
= 1

NUC

∑
�RA, �RA′

∑
md = 0, ±2
md ′ = ±1

(
ACB,ev

�k↓,md

)∗(
ACB,odd

�k↑,md ′

)
ei�k(RA−RA′ )

×
∫∫

dz d2rϕev∗
md

(�r − �RA)〈↓|V̂SO(z, r)|↑〉

× ϕodd
md ′ (�r − �RA′ ). (13)

The main contribution comes from the L · S Thomas spin-
orbit coupling on a given metal atom. Given that the CB is
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composed mainly of md = 0 orbitals, results in the expression,

VSO↓↑ = (
ACB,ev

�k↓,md=0

)∗(
ACB,odd

�k↑,md=−1

)
× 〈↓ md=0|V̂SO|↑md=−1〉. (14)

This SO term couples the even md = 0 spin-down band
with the md = −1 spin-up odd band, given by the product
of amplitudes of the two bands weighted by the spin-orbit
coupling matrix element.

Using the second-order perturbation theory in the basis of
lowest even and odd conduction band states, we obtain the
wave function of an electron in the valley +K in the presence
of both the electric field and the SO coupling. The wave
function in the +K valley with spin down ⇓ acquires a small
admixture of the spin-up state:

	
CB,ev
k,+K,⇓ = φ

CB,ev
k↓ χ↓ + Dk↓↑φ

CB,ev
k↑ χ↑, (15)

where, in the second-order perturbation theory,

Dk,↓↑ =
(

VSO↓↑VE(
ε

CB,ev
k,↓ − ε

CB,ev
k,↑

)(
ε

CB,ev
k,↓ − ε

CB,odd
k,↑

)
+ VEVSO↓↑(

ε
CB, ev
k,↓ − ε

CB,ev
k,↑

)(
ε

CB,ev
k,↓ − ε

CB,odd
k,↓

)
)

. (16)

We see that the process of spin rotation is proportional to the
applied vertical electric field and involves even and odd bands
as well as the spin-orbit interaction. The same procedure can
be applied to the −K valley.

We can now return to quantum dot states and our logi-
cal qubit. The logical qubit state |0〉 = |0,+K,⇓〉 acquires a
small spin-up component as

�0
+K,⇓ ∼=

∑
�k∈+K

BCB,ev
�k,⇓

(
φ

CB,ev
k,↓ χ↓ + Dk↓↑φ

CB,ev
k,↑ χ↑

)
, (17)

while the logical qubit state |1〉 = |0,−K,⇑〉 acquires a small
spin-down component,

�1
−K,⇑ ∼=

∑
�k∈−K

BCB,ev
�k,⇑

(
φ

CB,ev
k,↑ χ↑ + Dk↑↓φ

CB,ev
k,↓ χ↓

)
. (18)

We are now ready to couple the qubit states belonging to two
different valleys.

B. Local gate–intervalley rotation

We see that upon application of the vertical electric field
the qubit states acquire admixtures of states in the same valley
but with an opposite spin. We now introduce a local lateral
gate operator Ĝ which couples the two spin-valley-locked
states forming the qubit. The coupling defines the σx matrix
for logical qubit states:

〈1|σ |0〉 = 〈�−K,⇑|Ĝ|�+K,⇓〉
=

∑
�q∈−K

∑
�k∈+K

Bev∗
�q,⇑Bev

�k,⇓G(q, k)

×(
D∗

q↑↓Aev
�q,md =0↑Aev

�k,md =0↑+Dk↓↑Aev
�q,md =0↓Aev

�k,md =0↓
)
.

(19)

FIG. 4. Logical qubit coupling matrix element as a function of
position of the local gate R0 for a given vertical electric field VE .

In what follows, we assume the local gate G to be a lo-
calized Gaussian given by its Fourier transform G(q, k) =
−G0

R2
GS

4π
exp( −(�k−�q)2R2

G
4 ), where RG = 0.2 nm is the width of

Gaussian and G0 = 1 eV is its strength. Before proceeding
to analyze the coupling matrix element, we can discuss the
terms which significantly affect the strength of the coupling.
One of the important terms is the QD wave function Bev

�k(�q),⇓(⇑)
which is highly localized in the k space, as shown in the
inset of Fig. 3, where absolute value of the wave function
of one of the qubit states is shown. As a result of the high
localization in the k space, we can safely concentrate on
states close to the bottom of the +K (−K ) valley. Addition-
ally, the energy differences between even-even and even-odd
states are considered to be constant in this range and we take
ε

CB,ev
k,↓ − ε

CB,ev
k,↑ ∼= 3 meV and ε

CB,ev
k,↓ − ε

CB,odd
k,↑ ∼= 1.3 eV.

Also, the coupling of states is nonzero when the terms
Dk(q)↓↑ are significant. These terms are proportional to the
strength of the applied electric field and the spin-orbit cou-
pling. While the spin-orbit coupling is the property of the
material, the electric field can be turned on to activate the
σx matrix. The lateral gate G is responsible for the coupling
of the valley +K and −K . The localized Gaussian potential
G(q, k) has to be a local perturbation with nonzero Fourier
components | �q − �k| ∼ 2K . When turned on, it will be respon-
sible for flipping the valley index. We propose that a scanning
tunneling microscope (STM) tip or a gated impurity could be
used to realize this effect experimentally. We now discuss the
behavior of the coupling matrix element as shown in Fig. 4. A
representative QD studied in this project has a diameter of
40 nm centered at (x = 0, y = 0). We compute and plot the
coupling matrix element as a function of the position R0 of
the local perturbation G in a QD and R0 = Rxx̂ + Ryŷ where
Rx (nm) ∈ [0, 20] and Ry(nm) = 0 for a fixed applied vertical
field VE (where we take VE = 1 eV in these calculations). We
move the perturbation G from the center to the edge of the QD.
The coupling matrix element has a finite value at the center of
the QD and first increases towards the halfway and decreases
towards the edge of the QD. This nontrivial behavior can be
traced to the nontrivial effect of the electric field on coupling
of odd and even bands in TMDCs.

IV. CONCLUSIONS

To summarize, we developed here a theory of valley-
spin-based qubits in gated quantum dots in a single layer of
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transition metal dichalcogenides. The qubits were identified
with the two degenerate locked spin and valley states in a
gated quantum dot. The two qubit states were accurately de-
scribed using a multimillion atom tight-binding model solved
in the k space. The spin-valley locking and strong spin-orbit
coupling result in two degenerate states, one of the states
of the qubit being spin-down located at the +K valley, and
the other state located at the −K valley with spin up. We
describe the gates necessary to rotate the spin-valley qubit as
a combination of the applied vertical electric field enabling
the spin-orbit coupling in a single valley combined with a
lateral strongly localized valley mixing gate. We note that the
suggested setup shown in Fig. 1 can be readily implemented
for a one-qubit operation. On the other hand, to be able to
study manipulation of two or more qubit realizations, one can
introduce impurity centers to mimic the role of the STM setup
proposed in Fig. 1. In addition, the aim of the present work
is to show how one can manipulate a single spin-valley qubit.

The universal quantum computation requires also a two-qubit
gate. Hence, our future work will focus on a microscopic
description of a two-qubit gate operation where we will build
on this and previous works [79].
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