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Ion-beam machining of millimeter scale optics

Prashant M. Shanbhag, Michael R. Feinberg, Guido Sandri, Mark N. Horenstein, and
Thomas G. Bifano

An ion-beam microcontouring process is developed and implemented for figuring millimeter scale optics.
Ion figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward
a target substrate to remove material in a predetermined and controlled fashion. Owing to this non-
contact mode of material removal, problems associated with tool wear and edge effects, which are common
in conventional machining processes, are avoided. Ion-beam figuring is presented as an alternative for
the final figuring of small ~,1-mm! optical components. The depth of the material removed by an ion
beam is a convolution between the ion-beam shape and an ion-beam dwell function, defined over a
two-dimensional area of interest. Therefore determination of the beam dwell function from a desired
material removal map and a known steady beam shape is a deconvolution process. A wavelet-based
algorithm has been developed to model the deconvolution process in which the desired removal contours
and ion-beam shapes are synthesized numerically as wavelet expansions. We then mathematically
combined these expansions to compute the dwell function or the tool path for controlling the figuring
process. Various models have been developed to test the stability of the algorithm and to understand the
critical parameters of the figuring process. The figuring system primarily consists of a duo-plasmatron
ion source that ionizes argon to generate a focused ~;200-mm FWHM! ion beam. This beam is rastered
over the removal surface with a perpendicular set of electrostatic plates controlled by a computer
guidance system. Experimental confirmation of ion figuring is demonstrated by machining a one-
dimensional sinusoidal depth profile in a prepolished silicon substrate. This profile was figured to
within a rms error of 25 nm in one iteration. © 2000 Optical Society of America

OCIS codes: 220.1000, 220.4610.
1. Introduction

Rapid growth in the photonics industry, led by prod-
ucts such as fiber optics, compact disc players, and
semiconductor lasers, has created a need for small-
scale ~,1-mm! contoured aspherical components.

lthough certain techniques exist for contouring op-
ics on the centimeter scale and higher, to our knowl-
dge no precise, controllable, and robust process has
et been developed for shaping millimeter scale op-
ics. These optics include individual components
uch as lenses and mirrors for optical fiber interfaces,
ntraocular lenses, and arrays of microlenses and mi-
romirrors used for adaptive optics and flat panel
isplays. The development of cost-effective tech-
iques to make millimeter scale optics with custom
urface contours is a critical need for emerging pho-
onics applications. In this paper, ion-beam figuring
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is presented as a technique for imparting custom as-
pherical contours to a broad range of millimeter scale
optics.

A. Overview of Ion Figuring

Ion figuring is performed with a beam of high-energy
ions directed toward a target substrate in a predict-
able and controllable way. As shown in Fig. 1, ions
sputter the substrate on impact—breaking surface
bonds and removing material in molecular units.
When a compact beam is rastered across a substrate,
a complex contour can be generated. The depth of
material removed by an ion beam can be found as the
convolution between an ion-beam shape and an ion-
beam dwell function, defined over a two-dimensional
area of interest. In the process described in this
paper, the beam dwell function is computed for a
desired material removal contour and a known
steady beam shape. The dwell function is computed
through deconvolution. A wavelet-based algorithm
has been developed to model the deconvolution pro-
cess. The computed dwell function provides a pre-
scribed tool path for controlling the figuring process.

Experimentally, ion figuring is performed by ras-
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 599
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tering a focused ion beam over a workpiece surface.
Rastering is implemented with an orthogonal set of
electrostatic plates through which the beam passes
on its way through the ion source. The electrostatic
plates are controlled by a computer guidance system
in accordance with the desired dwell function.

The ion-figuring system used in this research com-
prises a duo-plasmatron ion source that generates a
3-keV argon-ion beam with a beam current of ;0.5
mA. Charged ions are accelerated by an electro-
static field and focused with electrostatic lenses to
form a focused ion beam. Accelerated ions break the
interatomic bonds of the target substrate on striking
it and thus sputter material off the surface. The
beamwidth can be varied from ;75-mm FWHM to
;200 mm, and peak removal rates can be varied from
25 to 200 nmymin. This is typically done by varying
he input voltages to the source and focusing optics
nd by controlling the gas ~argon! flow rate.
Material removal is spatially controlled by either

moving the beam with respect to the substrate or vice
versa. Figuring is performed in a chamber under
moderate vacuum ~;1.3 3 1025 Torr!. The ion
beam shape and peak removal rate remain approxi-
mately constant over the entire machining period, so
the material removed from the substrate can be
found as a convolution of a fixed beam profile and
beam dwell function.

An important feature of ion figuring compared with
other material removal processes is that the optical
substrate is loaded only by a molecular-scale impact
during machining, and this load is orders of magni-
tude smaller than that required for conventional pol-
ishing or grinding. Therefore problems associated
with tool wear and edge effects, which are common in
grinding and polishing, are eliminated. Addition-
ally, since the substrate is not clamped during figur-
ing, there is no postmachining workpiece distortion
resulting from the relaxation of clamping stresses.

B. Background of Ion Figuring

Wilson et al.1,2 pioneered the ion-figuring technique
by machining 30-cm optical flats of fused silica from
an initial surface error of 0.41l rms ~l 5 633 nm! to
a final figure of 0.042l rms in one iteration. They

Fig. 1. Ion-figuring process.
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used 1.5-keV argon ions at a 40-mA current produced
by a 2.54-cm Kaufman ion source. The entire ma-
chining was performed in 5.5 h. A deconvolution
algorithm based on Fourier transform, specifically
developed for the technique, accurately predicted the
desired material removal.

Allen and Keim3 reported the ion-figuring capabil-
ity for correcting symmetric and asymmetric figure
error on polished glass aspheric substrates. Ion fig-
uring was used to correct axisymmetric figure errors
to less than 0.010l rms. In this approach an aper-
ure was designed based on the residual radial error
rofile of the optic and a known ion-beam removal
ate.

Subsequently Allen et al.4–6 and Pileri7 success-
fully corrected the residual surface figure error on a
1.8-m Zerodur off-axis segment of the Keck telescope
primary mirror. The mirror blank was preprocessed
by the bend-and-polish technique8 and finally cut to
the desired hexagonal shape, which left significant
postmachining figure errors ~3.13 mm peak to valley,
.726 mm rms!. The mirror surface was ion figured
n a 2.5-m ion-figuring system with a 2.54-cm broad-
eam source in two iterations. The surface figure
rror was reduced from 0.726 to 0.252 mm rms in the
rst iteration and then to 0.090 mm rms in the final
tep.
Drueding et al.9–12 developed an ion-figuring sys-

tem for centimeter-size fused silica and chemical-
vapor-deposited SiC samples optics. The process
was demonstrated by figuring various spherical, par-
abolic ~both concave and convex!, flat, and saddle
hapes in these substrate materials. A parabola of
-m radius was figured in a fused silica substrate,
rom an initial error of 1138–80 nm ~rms! in one
teration. Similarly, a SiC saddle was figured from
n initial error of 982–324 nm ~rms! in one step.
It can be observed that previous efforts in ion fig-

ring have been concentrated toward machining op-
ical components with characteristic dimensions of
he order of a few centimeters and higher. In the
esearch presented in this paper, ion figuring has
een used to impart custom aspherical contours to
illimeter scale optics. Figuring is performed by

astering a focused ion beam ~typical sizes used are
0–200 mm! over a stationary target substrate.

2. Mathematical Model of the Figuring Process

A convolution model is used to describe the ion-
figuring process. In this model the following as-
sumptions have been made. All have been verified,
to first order, by empirical results.

• The beam function ~the material removal pro-
file of the ion beam! is fixed. It is the same at all
locations and times during the figuring process.

• Material removal is isotropic and proportional
to dwell time.

• The beam function is insensitive to rastering
position.
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For a given initial surface I~x, y! and a desired final
surface F~x, y!, the removal function R~x, y! is ob-
tained by subtracting the initial surface from the
final surface. This removal surface is machined
with an ion beam having a material removal function
or a beam function B~x, y!. The beam function is
governed by the physical parameters of the figuring
system. The dwell function D~x, y! is computed by
deconvolving B~x, y! from R~x, y!. The dwell func-
tion D~x, y! is the map of dwell times per unit area for
which the beam is held stationary at each point ~x, y!
during its sweep over the removal surface.

The ion-figuring process can be represented in two
dimensions:

R~x, y! 5 *
2`

`

*
2`

`

B~x 2 x9, y 2 y9!D~x9, y9!dx9dy9.

(1)

The total work space is broken into square grids of
unit area, and the beam is positioned at the center of
each area for a time approximately equal to the prod-
uct of the computed dwell function at the square’s
coordinates ~x, y! and the area of the square Aij.

Thus a dwell time at

i, j 5 **
Aij

D~x, y!dxdy

< D~xi, yj!Dxi, Dyj. (2)

This relationship allows us to express Eq. ~1! in dis-
cretized form as

R~x, y! 5 (
i50

m21

(
j50

m

B~x 2 xi, y 2 yj!D~xi, yj!DxiDyj. (3)

his discretization of the removal function suggests
hat the figuring process can be discretized in a sim-
lar way, thereby representing the removal process as

discrete two-dimensional ~2-D! convolution.
Since the contour figured by the ion beam is equal

o the convolution of a fixed beam profile and a beam
well function, i.e., R 5 B p D, computation of the

corresponding dwell function from the desired re-
moval and the fixed beam function is a deconvolution
process.

A. Earlier Methods

Wilson et al.2 used Fourier techniques to perform the
deconvolution operation. Convolution of the two
functions in the spatial domain can be expressed as a
product of their spatial Fourier transforms in the
spatial-frequency domain, e.g.,

R̃ 5 B̃ z D̃, (4)

where in this case R̃ is the spatial Fourier transform
of the removal function, B̃ is the spatial Fourier
transform of the beam function, and D̃ is the spatial
Fourier transform of the dwell function.

Thus in the Fourier implementation of the compu-
tation of the dwell function simply involves dividing
the Fourier transform of the removal function by the
Fourier transform of the beam function and taking
the inverse Fourier transform of the result:

D̃~x, y! 5 F21$R̃~kx, ky! z B̃21~kx, ky!%. (5)

The deconvolution step in Eq. ~5! is numerically un-
stable. This instability can best be explained by ex-
amining the case of a one-dimensional ~1-D!
Gaussian beam function. The Fourier transform of
a Gaussian, e.g., B~x! 5 exp~2x2yl2!, is itself a
Gaussian, B̃~k! 5 exp~2k2l2y4!, where k is the spa-
tial frequency in the Fourier space and l is the 1ye
width of the Gaussian function. The inverse Fourier
transform of this function represented by Eq. ~5! is
divergent because the denominator approaches zero
for large values of kx and ky. Wilson et al.2 resolved
this problem with a threshold inverse filter.

Allen and Romig4 have demonstrated an iterative
method for finding a solution to the dwell function.
In this method a smart guess is made for the dwell
function ~often by setting it equal to the desired re-

oval function! to compute the convolution. The
difference between the result of the convolution and
the actual removal function is then used for succes-
sive iterations. The computation is repeated until
the solution converges to within the acceptable limits
of error. Simply, this iterative process can be ex-
pressed as

Dn11 5 Dn 1 k~R 2 BpDn!. (6)

Stability is always a concern in iterative techniques,
and the experience of Allen et al.6 indicates that these
methods sometimes fail to converge. Nevertheless
this approach is quite attractive for its simplicity and
has met with considerable success in practice.

Figuring work reported by Carnal et al.13 is based
on a matrix algebraic approach that requires inver-
sion of the beam function matrix:

D~x, y! 5 R~x, y!B~x, y!21, (7)

where D~x, y!, R~x, y!, and B~x, y! are the dwell,
removal, and beam function matrices, respectively.
Matrix inversion becomes problematic when the
beam function becomes sparse and highly singular.
The requirements of square function matrices pose
similar problems, as in the Fourier approach.
Single-valued decomposition methods were used to
construct the solution.

B. Wavelet Algorithm

In this paper a novel wavelet-based algorithm has
been presented to model the deconvolution operation.
In the wavelet algorithm, each element of the convo-
lution, i.e., the removal function R~x, y!, beam func-
tion B~x, y!, and the dwell function D~x, y! is
synthesized by a wavelet series expansion.

For example, the removal function R~x, y! can be
expressed as

R~x, y! 5 (
n50

`

(
m50

`

rnm
~lRx,lRy!dlRx

n~x!dlRy

m~y!, (8)
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 601
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where dlRx
~x! is the nth derivative of the Gaussian

along x for l 5 lRx; dlRy

m~y! is the mth derivative of
the Gaussian along y for l 5 lRy; rnm

~lRx,lRy! is the ~n,
!th coefficient of the wavelet series expansion; and

Rx, lRy are the widths of the fundamental wavelet
along the x and y axes, respectively.

The first basis function of the wavelet series, which
is the zeroth derivative of a Gaussian, is known as the
fundamental wavelet of the series.

The nth derivative of a Gaussian can be computed
with Rodriguez’s formula14

dl
n~x! 5 ~21!nHn

l~x!dl~x!, (9)

where

dl~x! 5
exp~2x2yl2!

Îpl
(10)

is the normalized Gaussian in x, Hn
l~x! is the nth

~order! Hermite polynomial in x for a given l, and l is
the width of the Gaussian.

Similarly, the beam function is written as

B~x, y! 5 (
n50

`

(
m50

`

bnm
~lBx,lBy!dlBx

n~x!dlBy

m~y!, (11)

where bnm
~lBx,lBy! is the ~n, m!th coefficient of B~x, y!

in its wavelet series expansion.
The series coefficients of the removal and beam

functions, namely, rnm and bnm, respectively, are
computed by using the orthonormality of the basis
functions, e.g.,

rnm
~lRx,lRy! 5

~21!n1m~lRx!
2n~lRy!

2m

2nn!2mm! *
2`

`

*
2`

`

R~x, y!

3 Hn
lRx~x!Hm

lRy~y!dxdy, (12)

where Hn
lRx~x! is the nth ~order! Hermite polynomial

in x for l 5 lRx and Hm
lRy~y! is the mth ~order!

Hermite polynomial in y for l 5 lRy.
The basis functions and the series coefficients of

the removal and beam functions are related to the
dwell function. The fundamental wavelet widths of
the dwell function are calculated as

lDx
2 5 lRx

2 2 lBx
2, (13)

lDy
2 5 lRy

2 2 lBy
2. (14)

The dnm coefficients of the dwell function are com-
puted by using the deconvolution algebra, which is
developed in Subsection 2.3.

Using the dnm coefficients and the widths of the
basis functions, we synthesize the dwell function as
follows:

D~x, y! 5 (
n50

`

(
m50

`

dnm
~lDx,lDy!dlDx

n~x!dlDy

m~y!, (15)

where dnm
~lDx,lDy! is the ~n, m!th coefficient of D~x, y!

in its wavelet series expansion.
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C. Advantages of the Wavelet Technique

The wavelet technique offers the following advan-
tages:

• For the shapes that are commonly encountered
in this research, namely, sinusoids and Gaussians,
wavelets are efficient. The beam function B~x, y!,
for example, has a Gaussianlike distribution that can
be synthesized accurately by using the Gaussian ba-
sis of the wavelet expansion in relatively few terms.

• The deconvolution process ~as is evident in Sub-
section 2.E! is reduced to straightforward algebra,
which can be efficiently programmed on a computer.

D. Computation of Convolution and Deconvolution with
Gaussian Wavelets

In this subsection the wavelet deconvolution algebra
is developed for one-dimensional functions. One-
dimensional functions have been used for mathemat-
ical convenience, and a similar analysis leads to the
algebra for 2-D deconvolution.

Consider the following 1-D convolution:

h~x! 5 *
2`

`

f ~x 2 y!g~y!dy. (16)

The deconvolution algebra starts with the 1-D wave-
let expansions of the above functions, namely, f, g,
and h. The goal is to come up with an expression
that relates the wavelet expansion coefficients of
these functions, i.e., to express cs in terms of an and
bm:

f 5 (
n50

`

and1
~n!, (17)

g 5 (
m50

`

bmd2
~m!, (18)

h 5 (
s50

`

csd3
~s!. (19)

Using the algebraic properties of the convolution
product yields

fpg 5 F(
n

and1
~n!GpF(

m
bmd2

~m!G (20)

5 (
n

(
m

an bm@d1
~n!pd2

~m!# (21)

5 (
n

(
m

an bmd3
~n1m!. (22)

Rearranging the double sum by first changing the
summation variable and then interchanging the or-
der of summation, we have the following:

~1! Change of variables ~m 3 s for fixed n! i.e., let
n 1 m 5 s so ~n, m! 3 ~n, s!

fpg 5 (
n50

`

(
s5n

`

an bs2nd3
~s!. (23)
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~2! Interchange the order of summation ensuring
that the domain is preserved, i.e.,

fpg 5 (
n50

`

(
s5n

`

an bs2nd3
~s! (24)

5 (
s50

`

(
n50

s

an bs2nd3
~s! (25)

5 (
s50

`

d3
~s!S(

n50

s

an bs2nD . (26)

Comparing this with Eq. ~19! shows

cs 5 (
n50

s

an bs2n. (27)

In terms of n, vectors a, b, and c that represent the
sets of coefficients an, bn, and cn can be written as

c 5 apb. (28)

Writing out Eq. ~28! explicitly for n 5 0, 1, and 2
ields

c0 5 a0 b0, (29)

c1 5 a0 b1 1 a1 b0, (30)

c2 5 a0 b2 1 a1 b1 1 a2 b0 . . . . (31)

To compute bn from an and cn, we rewrite the linear
system of Eqs. ~28!–~31! are rewritten as

b0 5 c0ya0, (32)

b1 5 ~2c0 a1 1 c1 a0!ya0
2, (33)

b2 5 ~c0 a1
2 2 ~c0 a2 1 c2 a1!a0 1 c2 a0

2!ya0
3. (34)

quation ~28! can be conveniently written in recur-
ive form to obtain successive bn coefficients:

bn 5 Fcn 2 (
m50

n21

a~n2m!bmGYa0. (35)

similar analysis leads to the bn,m coefficients for the
2-D case and is given as follows:

bn,m 5 ~cn,m 2 M 2 N 2 O!ya0,0, (36)

where

M 5 (
x50

n21

(
y50

m21

a~n2x,m2y!b~ x,y!, (37)

N 5 (
x50

n21

a~n2x,0!b~ x,m!, (38)

O 5 (
y50

m21

a~0,m2y!b~n,y!. (39)

E. Steps of the Algorithm

In this subsection we describe the step-by-step decon-
volution procedure for using the wavelet algorithm.
The main inputs to the algorithm are the initial sur-
face contour and the beam distribution profile or the
beam function. The removal function R~x, y! is ob-
tained by subtracting the initial surface map from the
desired surface map. The algorithm then computes
the dwell time map by deconvolving the beam func-
tion B~x, y! from the removal function R~x, y!.

The algorithm has been numerically implemented
and tested in Matlab and its output is interfaced to
the ion gun controller of the duo-plasmatron by Lab-
View.

1. Measure the Beam Function B~x, y!
For a figuring system the first task is to measure the
beam function B~x, y!, which provides the depth re-
moval rate of the beam as a function of the radial
distance from its center. This can be easily deter-
mined by machining a hole in a flat substrate for a
known time period. The beam function is typically
Gaussianlike in distribution and is characterized by
its FWHM and maximum removal rate. The beam-
width is directly measured from the depth profile,
and the maximum removal rate is calculated by di-
viding the maximum depth of the hole by the overall
machining time. The beam profile and beam cur-
rent strongly depend on parameters such as the type
of ion source, voltage inputs to the source and focus-
ing optics, base and operating pressures inside the
machining chamber, and type and quality of the gas.
Historically, Kauffman-type15 filament ion sources
have been used for figuring centimeter-size optics.
Since the working area in this research was an order
of magnitude smaller, we needed a source that could
generate a narrow ~;200-mm FWHM! focused beam.
So a duo-plasmatron ion source ~donated by Oryx
Instruments, Fremont, Calif.! was used. In this
source the plasma is generated in two regions: the
low-density cathode plasma between the cathode and
an intermediate electrode and the high-density re-
gion between the intermediate electrode and anode.
The accelerated ions are subsequently focused into a
narrow beam with electrostatic lenses. This source
can generate ion beams with 3–5 keV and sizes vary-
ing from 50 to 200 mm ~FWHM! at beam currents of
approximately 0.5–2 mA.

An optimum combination of these various param-
ters produces a stable beam profile. Once a satis-
actorily stable beam is obtained, these settings are
ecorded to reproduce the same profile for subsequent
achining. A detailed description of the different

eam parameters and the method to obtain a stable
eam is included in Subsection 4.A.

. Measure the Removal Function R~x, y!
The removal function R~x, y! is obtained by subtract-
ing the initial height map I~x, y! of the optical surface
from the final desired surface F~x, y!. The initial
map is measured with any suitable metrology tech-
nique such as interferometry and surface profilom-
etry. The work space is discretized into small
squares of equal area, and the surface height is given
at the center of each square:

R~x, y! 5 F~x, y! 2 I~x, y!. (40)
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 603
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3. Offset the Removal Function
The removal map as obtained from the interferome-
ter has positive and negative heights with respect to
a zero reference. Because ion machining can only
remove material, it is important that the removal
function have only positive values. So the dataset is
offset by a suitable value. A large offset is undesir-
able since more terms are necessary to map the func-
tion. Typically this value is selected so that the
minimum value of the function is zero.

4. Attach a Taper along the Edges of the Removal
Function
The removal function has a finite boundary where the
function is not necessarily zero. To eliminate decon-
volution problems resulting from sharp discontinui-
ties at the edges, the function is artificially tapered
all along its boundary. Since the basis functions of
the wavelet expansions are Gaussians and their de-
rivatives, a Gaussian function was chosen for the
taper. The wavelet expansion can fit a Gaussian
edge more effectively than it can fit any other form of
taper. This additional taper data fall outside the
area of interest on the substrate.

Simulations with 1-D sinusoids revealed a correla-
tion between the width of the Gaussian taper and the
fundamental width of the wavelet expansion used to
synthesize the function. The series converged best
~the rms and local errors were used as metrics to test
convergence! when the width of the Gaussian taper

as ;75% of the width of the wavelet.

5. Synthesize the Removal and Beam Function
with the Wavelet Expansion
The next step involves synthesizing the removal and
the beam functions with Gaussian wavelets. This
step includes selection of two important parameters
of the wavelet expansion, namely, the fundamental
width of the wavelet series and the number of terms
of the expansion. The fundamental width of the
wavelet series is the width of the zeroth derivative
Gaussian ~basis! function. The expansion coeffi-
cients are computed by using the orthonormality of
the basis functions @see Eq. ~15!#. The accuracy of
the wavelet series with a certain number of expan-
sion terms is characterized by the rms error. The
rms error ~for fitting the removal and beam functions
in simulations! is the standard rms error and is de-
fined ~e.g., for the removal function! as follows:

rms error 5 F 1
N2 (

n,m51

N

$Ractual~xn, ym!

2 Rsynthesized~xn, ym!%2G1y2

, (41)

where N is the total number of points along the X and
Y axes, Ractual is the input removal function, and

synthesized is the removal function synthesized with
the wavelet expansion.
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6. Deconvolve
Using the wavelet deconvolution algebra developed
in Subsection 2.D, we compute the series coefficients
of the dwell function from the coefficients of the re-
moval and beam function:

dn,m 5 @rn,m 2 P 2 Q 2 R#yb0,0, (42)

where

P 5 (
x50

n21

(
y50

m21

b~n2x,m2y!d~ x,y!, (43)

Q 5 (
x50

n21

b~n2x,0!d~ x,m!, (44)

R 5 (
y50

m21

b~0,m2y!d~n,y!, (45)

and

dn,m is the ~n, m!th series coefficient

of the dwell function; (46)

n,m is the ~n, m!th series coefficient

of the beam function; (47)

rn,m is the ~n, m!th series coefficient

of the removal function. (48)

7. Synthesize the Dwell Function D~x, y!
The wavelet widths of the basis functions ~lDx, lDy!

sed to synthesize the dwell function are computed as
ollows:

lDx
2 5 lRx

2 2 lBx
2, (49)

lDy
2 5 lRy

2 2 lBy
2. (50)

With the series coefficients dn,m and the fundamental
widths ~lDx, lDy!, the dwell function D~x, y! is syn-
thesized as follows:

D~x, y! 5 (
n50

`

(
m50

`

dnm
~lDx,lDy!dlDx

n~x!dlDy

n~y!. (51)

This completes implementation of the wavelet-based
deconvolution algorithm.

F. Using the Computed Dwell Function for Ion Figuring

The synthesized dwell function is interfaced to the
controller of the duo-plasmatron source. A com-
puter interface ~designed in LabView! is built to con-
trol the ion source remotely. This interface controls
voltage input to the electrostatic raster plates of the
duo-plasmatron, thereby regulating the position of
the beam. The beam is held at a ~x, y! position for a
time interval equal to the computed dwell time at
that corresponding position, after which it moves on
to the next position and so on.
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3. Simulations

Various test cases were developed to identify the crit-
ical parameters of the figuring process, understand
their interrelationship, and test the performance of
the deconvolution algorithm. In addition to a better
understanding of the figuring system, the models
were also designed to set the theoretical limits of
the figuring process. Both 1-D and 2-D models
were developed and tested. The 1-D test models
were analytically generated, while the actual sur-
face of a nine-element continuous deformable
micro-electromechanical systems ~MEMs! mirror

as used as a 2-D model. The deformable mirror16

surface is approximately 850 mm 3 850 mm and has
sinusoidal height variation.
The following terminology is used in the simula-

ions.

• Lambda expansion lexpn is the fundamental
width of the wavelet series expansion ~the width of
the first basis function, which is also the zeroth
Gaussian derivative, is the fundamental width of the
series!.

• Lambda taper ltaper is the width of the Gauss-
ian taper.

• F is the real input data or the input function.
• Fcheck is the data ~function! synthesized with

the wavelet series.
• Lambda function lfunc is the dominant period of

the input function ‘F’.
• N is the number of expansion terms in the
avelet series.

A. Relevance of the Various Terms of the Wavelet
Expansion

A given function can be synthesized with Gaussian
wavelets to within acceptable limits of error by se-
lecting an arbitrary lexpn ~fundamental width of the
wavelet series! and a large number of expansion
terms. Alternatively, one can approximate that
function by limiting the number of terms to a finite
value and choosing an optimal width lexpn. With the
optimal lexpn the wavelet expansion converges much
faster than with an arbitrary width. Theoretically,
lexpn should be larger than the grid spacing ~or the
discretization length! used in figuring and less than
the domain ~or the support! of the function.

Generally, for a function with an inherent periodic
urface height variation, the optimal value is found to
e related to the dominant period of the function.
he first choice of lexpn for synthesizing such func-

tions with the wavelet expansion is often the domi-
nant period of the function itself.

In Subsection 3.B it is shown that for a 1-D sinu-
soidal function an optimal value of lexpn exists that is
related to the dominant period of the function lfunc.
Similarly, for a sinusoidal function with a finite non-
zero boundary, the relationship between the width of
the Gaussian taper ltaper and the dominant period of
he function lfunc is deduced.

The results from the 1-D analysis of these sinusoi-
dal functions are utilized for the synthesis of the real
surface of a MEMS mirror in Subsection 3.C. The
mirror surface spans over an area of approximately
850 mm 3 750 mm and has an approximately sinu-
oidal height variation. The dwell function required
or correcting the nonplanarity of this mirror surface
ith a 120-mm ~FWHM! ion beam is also computed.

B. One-Dimensional Simulations

The wavelet algorithm was tested at various stages of
its development. During the initial stages of the al-
gorithm, 1-D models were developed and synthesized

• To optimize the selection of the parameters of
the wavelet expansion, namely, the fundamental
width of the wavelet series lexpn and the number of
terms in the expansion.

• To select an optimal width for the Gaussian
taper ltaper.

All parameters of the 1-D models are expressed in
arbitrary units.

In this subsection lexpn is optimized for a sinusoi-
dal function with 5 bumps. The 5-bump model is a
cosine function with an amplitude variation of 5
units, offset from zero by 10 units, and has a fluctu-
ation period of 20 units ~i.e., lfunc 5 20 units!.

Figure 2 shows the 5-bump model, synthesized
with lexpn 5 14 units and 85 terms of the wavelet
expansion. In Fig. 3, the wavelet expansion synthe-
sizes the same function more accurately with lexpn 5
19 and the same number of expansion terms:

optimal lexpn 5 ~0.8 to 1.1!lfunc.

Figure 4 shows the variation of the rms error with
lexpn for the 5-bump model. In general the error is
minimized when lexpn ' lfunc.

Various 1-D simulations in addition to the example
described here were performed. All had a dominant

Fig. 2. Five-bump sinusoid mapped with lexpn 5 14 units and 85
terms.
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 605
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periodicity characterized by lfunc. The trends that
were observed are as follows:

ltaper ' 0.75lfunc provides the least-fitting error,

lexpn ' lfunc provides the optimal synthesis.

More terms are necessary to synthesize the function
with higher-frequency contour components.

C. Two-dimensional Simulations

The test model for 2-D simulation is the surface of a
real nine-element continuous MEMS deformable
mirror.16 This mirror is a thin-film MEMS device
that is used to correct wave-front aberrations in an
adaptive optics application. During fabrication a
complex stress gradient is induced along the thick-
ness of the mirror membrane, which distorts the sur-
face planarity when the device is released. The
objective of this simulation is to compute the dwell
function that can be used to planarize the mirror
surface with a focused ion beam.

Fig. 3. Same five-bump sinusoid mapped more accurately with
lexpn 5 19 units and 85 terms.

Fig. 4. Variation of rms error with lexpn.
06 APPLIED OPTICS y Vol. 39, No. 4 y 1 February 2000
The dwell function has been computed for a rela-
tively broad 120-mm ~FWHM! ion beam. The nar-
rowness or broadness of the ion beam is defined
relative to the size of the features in the removal
surface. Some interesting results are obtained
when the beamwidth becomes comparable with the
feature size of the removal function. These results
are discussed in Subsection 3.C.3.

1. Synthesizing the Removal Function R~x, y!
The initial surface of the deformable mirror is mea-
sured interferometrically with a Phase Shift inter-
ferometer. Since the objective is to make this mirror
surface flat, the initial measured contour is the re-
moval function ~with offset and taper added!. Note
that the surface points have been highly exaggerated
along their Z axis for better visualization.

The surface has a sinusoidlike height variation
with a dominant period of ;260 mm along the X axis
and 200 mm along the Y axis. The maximum non-
planarity of the surface is 325 nm. The surface
spans an area of 850 mm 3 750 mm. Based on the
1-D analysis in Subsection 3.B, the fundamental
widths of the wavelet series ~along the X and Y axes!
re chosen as follows:

lexpn_x 5 225 mm, lexpn_y 5 195 mm.

o eliminate mapping difficulties due to sharp dis-
ontinuities at the finite boundary of the surface, we
ttach a Gaussian taper to its edges. The width of
his Gaussian taper is also chosen based on 1-D anal-
sis ~ltaper 5 0.75 3 lexpn!. Thus ltaper_x 5 165 mm
nd ltaper_y 5 145 mm are chosen as the taper widths
long the X and Y axes.
The removal function is synthesized with 25 terms

f the wavelet series, and the synthesized function
nd its contour plot are shown in Figs. 5 and 6, re-
pectively. Quantitatively, the removal function
as been mapped to within a rms error of 3 nm, which

s plotted in Fig. 7.

Fig. 5. Initial surface offset and tapered to obtain the removal
function R~x, y!.



2. Synthesizing the Beam Function B~x, y!
The beam function is Gaussianlike, which is circu-
larly symmetric along the X and Y axes. The beam,
as shown in Fig. 8, is 120 mm ~FWHM! wide along the
X and Y axes and has a peak removal rate of 100
nmymin. This function is defined over the same do-
main as the removal function.

The beam function is synthesized with 25 terms of
the wavelet expansion. Since the basis functions of
the wavelet expansion are Gaussians and their deriv-
atives, the expansion fits the wavelet expansion accu-
rately to within a few percent with just the first
expansion term. The additional terms have been
used to satisfy the requirements of the deconvolution
algebra, i.e., that both functions ~removal and beam! be
synthesized with the same number of expansion
terms.

3. Deconvolution and the Synthesis of the Dwell
Function D~x, y!
The dwell function D~x, y! is computed with the wave-
let deconvolution algebra described in Subsection 2.D.
Note that the computed dwell function, shown in Fig.

Fig. 6. Contour plot of the removal function R~x, y!.

Fig. 7. Variation of the rms error of the synthesized removal
function R~x, y!.
9, does not resemble the removal contour ~Fig. 5! in any
way. The contour plot of the dwell function is shown
in Fig. 10. The reason for this nonintuitive dwell
function is that the 120-mm ~FWHM! beam used to
figure the removal surface is comparable with the
250-mm dominant spatial period observed in the re-
moval function.

Fig. 8. Synthesized beam function B~x, y!.

Fig. 9. Calculated dwell time D~x, y!.

Fig. 10. Contour plot of dwell time D~x, y!.
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 607
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This simulation clearly indicates the ability of the
wavelet algorithm to compute dwell functions for im-
parting finely detailed removal contours even with
relatively wide beams.

4. Ion-Figuring Test Station

A schematic of the ion-figuring system is shown in Fig.
11. The test station consists of a chamber that houses
the duo-plasmatron source, and other peripherals are
attached to it, such as pressure gauges and a
translation–rotation stage. Figuring is performed at
an operating pressure of approximately 1.3 3 1025

Torr. This pressure is achieved and maintained with
the standard two-step pumping scheme by roughing
and vacuum pumps. The roughing pump is a dual-
seal Welch vacuum pump that roughs the chamber to
a pressure of 1 3 1023 Torr and also provides the same
back pressure to a Varian turbomolecular ~turbo! vac-

um pump. The turbopump takes over from the
oughing pump and pumps down the chamber to a
esired operating pressure of 1.3 3 1025 Torr. The

vacuum inside the chamber and the two pumping lines
is monitored with thermocouples and ion gauges.

The duo-plasmatron ion source is attached to the
bottom face of the vacuum chamber and is driven by a
power supply and controller. Oryx Instruments built
a computer-controlled interface in LabView to monitor
and control the ion source remotely. The beam cur-
rent of the ion source is collected by a Faraday cup
inside the chamber and subsequently measured by a
Keithley Instruments electrometer. The entire sys-
tem is enclosed within a specially designed box frame
assembled from extruded aluminum I-sections.

The chamber is a six-way cast steel cross with the

Fig. 11. Schematic of the ion-figuring system.
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ion source ~gun! attached to its bottom face and point-
ing up. The low vacuum ~;1023 Torr! inside the
chamber is monitored with a thermocouple, and a Var-
ian Bayard–Alpert ion gauge is used for a moderate
vacuum ~;1-2 3 1026 Torr!. The vacuum gauges are
mounted on the left face of the 6-way cross ~viewed
from the front!. The front face has a glass blank that
serves as a viewport, and the turbopump is mounted to
the back face of the chamber. The sample is loaded
inside the chamber from the top through a vacuum-
compatible hinged door.

To figure micro-optical components in multiple ma-
chining cycles, we need to design a referencing system
that locates the beam with respect to the workpiece.
One possible design would be to use triangulation:
measure the current through three holes ~accurately
etched outside the useful area of the optic during fab-
rication!. Once the beam location is determined with
respect to these holes, it can be rastered accurately to
any position on the substrate. For initial proof-of-
concept machining, the sample was placed on a
custom-designed mount. The mount was fixed to a
translation–rotation vacuum-compatible stage, which
provided linear motion with a precision of 1 mil and
a rotary motion of 360 deg with a precision of 1 deg.

5. Stability of the Duo-Plasmatron Ion Source

The source ideally should produce a beam that re-
mains stable over the entire machining period, which
can extend over a period of 10–12 h. Beam stability
can be characterized both by the beam current and by
the spatial distribution of the beam. Both have to
remain constant over the entire period to ensure beam
stability.

A series of tests were carried out to locate the most
stable operating range of the ion source. For a par-
ticular source gas there are numerous parameters,
such as source, arc and lens voltages, base and oper-
ating pressures, and a voltage drop across the resis-
tor connected to the intermediate electrode ~which
controls generation of plasma in the high-density
region and also the arc current!, that govern the
stable operation of the gun. In addition to getting
a stable beam, it is also necessary to have sufficient
beam current to produce a satisfactory etch rate.
~A beam current of ;0.25–0.5 mA generates etch
ates of approximately 100–200 nmymin.! A se-
ies of parametric tests were conducted in which the
bove-mentioned parameters were stepped in pre-
etermined increments, and their dependence on
he beam current and its stability was monitored
ver 30-min intervals.
Carefully conducted experiments showed that the

eam stability was greatest at low operating pres-
ures of ;1.3 3 1025 Torr, with a base pressure of

;2 3 1026 Torr, and the following voltage settings
that are specific to this source:

~1! Source, 3000 V; ~3! lens 1, 2250 V;
~2! arc, 300 V; ~4! lens 2, 1550 V.
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These voltage and pressure settings produced a sta-
ble symmetric beam with a beamwidth of ;100-mm
FWHM, a beam current of ;0.3 mA, and an etch rate
f ;150 nmymin.
The optimum lens voltages ~namely, 2250Vy

550V! indicate that the beam is focused in the cross-
ver mode. As mentioned above, this mode allows
or cleaning the beam spatially by putting in an ap-
rture in the Fourier plane ~the focal plane of lens 1!.

6. Figuring Results

Numerous figuring experiments were conducted on
initially flat silicon substrates during various stages
of development of the ion-figuring system. The two
most significant ones are mentioned in Subsection
6.A.

A. Uniform Depth Profile ~Trough!

In this experiment a 1-D uniform depth profile, i.e., a
trough, was machined in a 15 mm 3 15 mm flat
silicon substrate. The profile was machined with a
relatively broad beam, shown in Figs. 12–14, namely,
200 mm wide ~FWHM! and a peak removal rate of 13
nmymin. Figure 15 shows the contour plot of the
1.7-mm-long trough, and the depth profile of the
trough is shown in Fig. 16.

The trough was machined by discretizing the work
space into 85 segments spaced 20 mm apart and
dwelling the beam at the center of each segment for
30 s. The average depth of the trough is 70 nm, and
the overall depth error is within 65% of the maxi-
mum height. The actual machining time for this
experiment was ;35 min. The rms surface rough-
ness of the silicon substrate before machining was 3
nm, and the postmachining roughness was also 3 nm,
which shows that the surface roughness of the sub-
strate is not affected by ion figuring.

B. Sinusoidal Depth Profile

This experiment was conducted to test implementa-
tion of the wavelet algorithm by machining a sinu-
soidal depth profile in a flat silicon substrate. The
depth profile was machined with the dwell map com-
puted by the wavelet algorithm. Since this experi-
ment was also conducted in close succession to the
previous one, the same beam parameters ~i.e.,
Fig. 12. Contour plot of a typical hole ~beam profile! machined in
prepolished silicon substrate.
Fig. 13. Depth variation along the X axis ~taken at the center! of
he hole.
Fig. 14. Depth variation along the Y axis ~taken at the center! of
the hole.
Fig. 15. Contour plot of the uniform depth profile.
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 609
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200-mm FWHM and a peak removal rate of 13 nmy
in! were used.
The removal function, R~x! as shown in Fig. 15, is
2-bump sinusoid with an offset of 250 nm and an

mplitude of 50 nm. The bumps are periodically
paced 750 mm apart, and the end points of the func-
ion are tapered down with a 200-mm ~FWHM!

Fig. 16. Depth profile of the trough along its center.

Fig. 17. Contour plot of the figured profile.

Fig. 18. Experimental removal function R~x!.
10 APPLIED OPTICS y Vol. 39, No. 4 y 1 February 2000
aussian taper. The actual sinusoid spans a length
f 1.5 mm, but with the taper this length extends to
.4 mm. The deconvolution was performed by dis-
retizing the entire substrate into 281 segments
paced 8.54 mm apart. The dwell function D~x! was

obtained by deconvolving the removal function R~x!
from the beam function B~x! by wavelet deconvolu-
tion techniques. The calculated dwell map was used
to control the raster of the beam over the substrate
and to generate the desired depth profile.

Figure 17 shows the contour plot of the sinusoidal
profile that was machined in ;4 h in the silicon sub-
strate. The depth profile along the center cross sec-
tion is shown in Fig. 18. A close correlation can be
observed between Fig. 18 and the theoretical profile
shown in Fig. 19. Quantitatively the profile was fig-
ured to within a rms error of 25 nm, which is ;8% of
the maximum depth of the sample. The pre and
post rms surface roughness was measured to be 3 nm.
Also, the figuring rate was observed to be indepen-
dent of crystal orientation. This experiment demon-
strated successful implementation of the wavelet
algorithm.

7. Summary and Conclusions

An ion-beam-figuring system has been developed for
contouring millimeter scale optics. Measured ion-
beam functions and desired removal functions were
used in a wavelet-based deconvolution algorithm to
generate an appropriate dwell function for ion-beam
rastering.

Numerous test models were developed to test the
stability of the wavelet algorithm. We designed
both 1-D and 2-D models for the purpose of under-
standing the critical parameters of the figuring pro-
cess and figuring out their interdependence. All 1-D
models had a dominant periodicity characterized by
lfunc. The following trends were observed:

ltaper ' 0.75lfunc provides a least-fitting error,

lexpn ' lfunc provides an optimal synthesis.

More terms are necessary to synthesize a function
with higher-frequency contour components.

Fig. 19. Desired removal function R~x!.
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2. S. R. Wilson, D. W. Reicher, and J. R. McNeil, “Surface figuring
The actual surface of a 9-element continuous de-
formable MEMS mirror was used as a test model for
2-D simulations. The mirror surface spanned over
an area of 850 mm 3 750 mm and had a maximum
height error of 325 nm. This surface, which was
synthesized with fundamental widths lx 5 225 mm
nd ly 5 195 mm and 25 wavelet terms, was fit to
ithin a rms error of 3 nm. We deconvolved a cir-

ularly symmetric 120-mm-wide Gaussian beam
unction from this removal function to compute the
well function. The calculated dwell function was
onintuitive and did not resemble the removal func-
ion. The beamwidth used in this simulation was
omparable with the size of the features on the re-
oval function, which resulted in the nonintuitive

well function.
As proof of concept, the system was used to contour

5 mm 3 15 mm prepolished silicon substrates. A
.7-mm uniform depth profile was figured with a
00-mm FWHM beam with a peak removal rate of 13
mymin. This profile was figured by discretizing
he work space into 85 steps of 20 mm each, and the
eam was dwelled at the center of each step for 30 s.
he maximum depth of the trough was 70 nm, and

he depth variation was within 65% of this maximum
epth. A 2-bump sinusoidal depth profile with a
aximum depth of 300 nm and a length of 2.4 mm
as machined in the silicon substrate. The work

pace was discretized into 281 segments of 8.04 mm.
he dwell function used to figure this profile was
omputed by the 1-D implementation of the wavelet
lgorithm. The profile was figured to the desired
rofile to within a rms error of 25 nm in one iteration.
he main source of this error was likely to be changes

n the beam function during the course of the ma-
hining process. Such changes in beam function
ere observed in experiments conducted previously

n this machine, and the magnitude and time con-
tants associated with this drift were consistent with
he figuring error obtained. The figuring rate was
bserved to be independent of the crystal orientation.
oughness measurements of the premachined and
ostmachined substrates indicated that ion figuring
oes not affect surface roughness.
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Hornstein, and D. Castañon, “Continuous membrane surface
micromachined silicon deformable mirror,” Opt. Eng. 36,
1354–1360 ~1997!.
1 February 2000 y Vol. 39, No. 4 y APPLIED OPTICS 611


