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Abstract
Parallel-plate electrostatic actuators are a simple way to achieve piston
motion for large numbers of mirrors in spatial light modulators. However,
selection of design parameters is made difficult by their nonlinear behavior.
This paper presents simple models for predicting static and dynamic
behaviors of fixed–fixed parallel-plate electrostatic actuators. Static
deflection equations are derived based on minimization of the total potential
energy of the beam. Beam bending, residual stress, beam stretch and applied
electrostatic force are included in the potential energy formulation.
Computation time is reduced by working with assumed mode shapes. The
problem of predicting midpoint beam deflection has been reduced to finding
the roots of a third-order equation. Model results are compared to
finite-element analysis results. In the dynamic analysis, Lagrange’s method
is used to derive the nonlinear equation of motion. An equation for
predicting natural frequency, assuming small midpoint deflections about a
dc setpoint, is presented. In addition, the effect of gas pressure on the
damped natural frequency of a rigid actuator is analyzed. Experimental
measurements of static deflection and frequency response are compared to
model predictions. The actual micromirrors exhibit less strain stiffening
than the model predicts.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Large arrays of micromachined piston-motion mirrors are
required for laser communication and optical correlation
applications. Such devices can be used to rapidly modify
the spatial phase of a coherent wavefront. Spatial phase
modulation has been possible for some years, primarily
through the use of liquid crystal phase devices. MEMS-based
spatial light modulators (µSLM) promise orders of magnitude
higher speed, enabling the use of SLMs in applications
such as pattern recognition and laser communication, which
typically require faster response than is achievable using
liquid crystal devices. In the design of these devices mirror
flatness, maximum static deflection and response time are
specified. For our specific application, maximum deflection
was specified as 750 nm and step response time as 10 µs.

An efficient way to accomplish the piston motion of
the SLM pixels is via parallel-plate electrostatic actuators.
This design is easy to fabricate and permits a high fill factor
mirror surface. While the basic operation of a parallel-
plate electrostatic actuator is simple, its static and dynamic
behaviors are complex to model.

A wide spectrum of analytical and numerical models
has been developed for describing the motion of parallel-
plate electrostatic actuators. Beam bending models have been
modified to include the nonlinear electrostatic force, stiffening
due to beam stretch and residual stress from the fabrication
process. The models are commonly used to predict static
deflection, pull-in voltage and resonant frequency. Tilmans
and Legtenberg [1] use the Rayleigh–Ritz energy minimization
with versine and dynamic mode shapes to predict pull-in
voltage and resonant frequency of electrostatically driven
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Figure 1. Schematic of nine elements in a micromachined spatial light modulator (µSLM).

resonators. They describe the effect of dc bias voltage on
resonant frequency. Their model does not include beam
stretch. Choi and Lovell [2] use a shooting method to solve
the nonlinear force equilibrium equation. They noted the
significant effects of beam stretch and residual stress on static
displacement. Najar et al [3] use the differential quadrature
method to discretize the beam equation of motion. Abdel-
Rahman et al [4] present a detailed parametric analysis of the
beam stretch effect.

Several strategies have been adopted to reduce
computation time. Choi and Lovell [2] derived a closed
form solution for the actuator displacement based on one-
and two-term linear approximations of the electrostatic force.
Chowdhury et al [5] describe a semi-empirical closed form
model for the pull-in voltage. Ananthasuresh et al [6]
investigated the relationship between number of mode shapes
and accuracy of reduced-order macromodels. Mehner et al
[7] describe a process for generating macromodels based on
modal methods and polynomial fits of finite-element results.
Younis et al [8] generated a reduced-order model by using up
to five linear undamped dynamic mode shapes to represent the
beam.

Ambient pressure of the operating environment has
a significant effect on dynamic behavior. A number
of researchers have experimentally observed the effect of
gas pressure on resonant frequency for MEMS devices,
including Seidel et al [9], Andrews et al [10] and Veijola
et al [11]. Squeeze film dynamics models adequately
characterize the observed behaviors. Yang et al [12] present a
model of squeeze film damping for flexible beams. Hung
et al [13] describe a method for generating orthogonal
basis functions for actuator shape and air pressure from
results of a small number of high-order dynamical simulations.
Darling et al [14] developed computationally efficient
equations for rigid plates with arbitrary venting conditions. By
using perturbation methods to derive analytical expressions
for the gas pressure distribution, Nayfeh and Younis [15]
improve the accuracy of models that apply to flexible
beams.

Our goal is to develop simple equations that permit
accurate quick predictions of micromirror deflection and
bandwidth. The models must accurately account for the effects
of dc bias voltage and ambient pressure. While adopting
oft-used approaches, such as energy minimization, assumed
modes and the Lagrangian method, we consider a unique set
of assumed modes and account for the extra mass of the mirror
layer. We carry out finite-element simulations and measure
performance of micromirror devices for comparison.

3 mm

Figure 2. Nomarski micrograph of 140 pixel µSLM.
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Figure 3. Fixed–fixed beam bending under (a) uniform distributed
load and (b) non-uniform distributed load.

2. Static analysis

Nine pixels of a µSLM device are shown schematically in
figure 1. The complete device may have hundreds or thousands
of such pixels. A device similar to that shown in figure 2 was
used for the experimental testing described in sections 3, 5
and 6. A pixel is actuated by applying a voltage difference
between its membrane and the lower electrode.

The electrostatic force can be described by

Felectrost = εoAV 2

2(go − x)2
, (1)

where εo is the permittivity of free space, A is the electrode
area, V is the voltage difference, go is the original gap and x is
the actuator displacement.

The membrane layer may be modeled as a fixed–fixed
beam with distributed load. Figure 3(a) shows a uniform
distributed load for which the stiffness can be modeled as

k = 384
EI

L3
. (2)
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Table 1. Beam mode shapes used in static deflection analysis.

φ(y) = y4 − 2Ly3 + L2y2 Uniform load
φ(y) = − 1

360 y6 + 1
120 Ly5 − 5

360 L3y3 + 1
120 L4y2 Parabolic load

φ(y) = (
cosh λy

L
− cos λy

L

) − cos λ−cosh λ

sin λ−sinh λ

(
sinh λy

L
− sin λy

L

)
Dynamic (λ = 4.73)

φ(y) = 1 − cos 2πy

L
Versine

Figure 3(b) shows the more realistic non-uniform load that
results from the deflection x dependence in the electrostatic
force.

The static deflection of the beam can be found by
minimizing the total potential energy of the beam, π :

π = EI

2

∫ L

0
(x ′′)2 dy︸ ︷︷ ︸

bending

+
EA

8

∫ L

0
(x ′)4 dy︸ ︷︷ ︸

beam stretch

− Fa

2

∫ L

0
(x ′)2 dy︸ ︷︷ ︸

residual axial stress

− εowV 2

2

∫ L

0

1

go − x
dy︸ ︷︷ ︸

electrostatic force

, (3)

where EI is the beam’s flexural rigidity, x(y) its deflection, Fa

is the applied axial compressive force, εo is the permittivity
of free space (8.854 × 10−12 C2 N−1 m−2), L is the length of
the beam, w is the width of the beam and go is the nominal
gap between the bottom of the beam and the stationary plate
below.

2.1. Assumed modes

The shape of the actuator membrane during deflection can be
accurately described with finite-element methods. To reduce
computation time, we solved equation (3) by assuming mode
shapes with the following form:

x(y) =
∑

i

aiφi(y). (4)

To find the beam deflection given the mode shapes φi and input
voltage V, it would then be necessary to find the constants ai

that minimize π in equation (3). Table 1 describes four types
of mode shapes that were considered both individually and
in combination. The uniform and parabolic load modes are
the shapes that result from solving the static beam deflection
equation

EIφ′′′′ =
∫ L

0
p(y) dy (5)

for a fixed–fixed cantilever beam with distributed pressure p =
constant and p = parabola, respectively. The dynamic mode
shape is the first dynamic mode for a fixed–fixed cantilever
beam. The versine model shape has no physical significance
other than that it satisfies the boundary conditions and has a
reasonable shape. Figure 4 compares the four mode shapes.
All are very similar, especially the first three.

The beam deflection can be estimated by finding ais that
minimize π in equation (3) or finding as that solve

∇π = 0. (6)

As an example, consider a one-mode expansion of x:

x(y) = aφ(y), (7)
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Figure 4. Comparison of analytical mode shapes.

where φ(y) is one of the mode shapes described above. Then
equation (3) becomes

π = a2 EI

2

∫ L

0
(φ′′)2 dy + a4 EA

8

∫ L

0
(φ′)4 dy

− a2 Fa

2

∫ L

0
(φ′)2 dy − εowV 2

2

∫ L

0

1

go − aφ
dy. (8)

Substituting equation (8) into equation (6) yields

dπ

da
= 0 = aEI

∫ L

0
(φ′′)2 dy + a3 EA

2

∫ L

0
(φ′)4 dy

− aFa

∫ L

0
(φ′)2 dy − εowV 2

2

∫ L

0

φ

(go − aφ)2 dy. (9)

2.2. Numerical solution

The electrostatic (last) term in equation (9) prevents an
analytical solution. Using a numerical minimization routine,
a in equation (8) can be found and then substituted back into
equation (7) to yield the beam deflection.

Deflections were found in this way for the four mode
shapes using the conditions given in table 2. The actuator
dimensions listed in table 2 coincide with the dimensions of
the actual device used later for experimental validation. The
beam was discretized into 400 elements when performing
the numerical integrations. Figure 5 shows the midpoint
deflections for the numerical integration results. The results
for the four mode shape assumptions are nearly identical to
each other up to about 175 V.

Two-term combinations of mode shapes were also tried,
such as

x(y) = a1φuniform + a2φdynamic. (10)

These results differed from those shown in figure 5 by a
negligible amount.
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Figure 5. Comparison of midpoint deflections resulting from the
numerical solution with different mode shape assumptions.

Table 2. Conditions for the case study.

Parameter Value

Elastic modulus (E) 170 GPa
Density (ρ) 2330 kg m−3

Length (L) 240 µm
Width (w) 240 µm
Thickness (t) 2 µm
Nominal gap (go) 5 µm
Axial pressure (Fa/(wt)) 10 MPa
Permittivity (εo) 8.854 × 10−12 C2 N−1 m−2

2.3. Approximate solution

A binomial series expansion of the electrostatic force term
in equation (9) permits an analytical solution. We wanted
to determine the number of terms that would give adequate
deflection predictions. The integrand of the last term in
equation (9) can be approximated as follows:

φ

(go − aφ)2
= φ

g2
o

(
1 − aφ

go

)2

= φ

g2
o

[
1 + 2

aφ

go
+ 3

(
aφ

go

)2

+ 4

(
aφ

go

)3

+ · · ·
]

. (11)

Substituting equation (11) into equation (9) gives

0 = −εowV 2

2g2
o

∫ L

0
φ dy︸ ︷︷ ︸

zeroth-order term

+


EI

∫ L

0
(φ′′)2 dy − Fa

∫ L

0
(φ′)2 dy − εowV 2

g3
o

∫ L

0
φ2 dy︸ ︷︷ ︸

first-order term


a

−
[

3εowV 2

2g4
o

∫ L

0
φ3 dy

]
a2

︸ ︷︷ ︸
second-order term

+


EA

2

∫ L

0
(φ′)4 dy − 2εowV 2

g5
o

∫ L

0
φ4 dy︸ ︷︷ ︸

third-order term


 a3 − · · ·

−
[

n + 1

2gn+2
o

εowV 2
∫ L

0
φn+1 dy

]
an

︸ ︷︷ ︸
nth-order term

. (12)
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Figure 6. Midpoint deflection prediction using zeroth–third-order
expansions of the electrostatic force term.

The coefficients of a in this equation can readily be calculated
and the roots of a found. The midpoint deflection of the beam
is

x(L/2) = aφ(L/2). (13)

For example, for the uniform load mode shape, equation (12)
is

0 = −εowV 2

60g2
o︸ ︷︷ ︸

zeroth-order term

+


4EI

5
− 2FaL

2

105
− εowV 2L4

630g3
o︸ ︷︷ ︸

first-order term


 a

−
(

εowV 2L8

8008g4
o

)
a2

︸ ︷︷ ︸
second-order term

+


4EAL8

15 015
− εowV 2L12

109 395g5
o︸ ︷︷ ︸

third-order term


 a3 (14)

and the midpoint deflection is

xL/2 = L4

16
a. (15)

Figure 6 shows the midpoint beam deflection assuming a
uniform load mode shape for n = 0–3 as well as n = infinity
(equivalent to the numerical integration solution for uniform
load mode shape shown in figure 5). Note that at 150 V the
third-order expansion has 0.20% error while the first-order
expansion has 1.6% error. At 300 V, the error with the third-
order expansion is 1.6%. It is 11% for a first-order expansion
and 28% for a zeroth-order expansion.

3. Static model validation

A finite-element model was created for comparison to the
uniform load mode shape solution. It consisted of 96 × 96
linear quadrilateral plate elements for the actuator membrane.
The two end supports were either assumed rigid or modeled
with 8 × 96 × 2 linear solid hexahedron elements. Figure 7
compares the midpoint deflection results for the conditions
described in table 2, assuming rigid supports. The results
match very closely up to an input voltage of 180 V (0.6 µm
deflection).

At higher deflections, the uniform mode shape assumption
begins to break down. To explore this further, the shape
along the centerline of the finite-element plate was recorded
for several applied voltage/deflection conditions. Figure 8
compares the uniform load mode shape (that is independent
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Figure 7. Comparison of midpoint deflection results for conditions
outlined in table 2.

of voltage/deflection) with finite-element mode shapes for
two voltage/deflection conditions. Note that both finite-
element shapes are nearly identical to the uniform mode shape;
however, the finite-element shape drifts away from the uniform
load mode shape at higher deflections. Mehner et al [7] note
that higher order mode shapes are necessary to adequately
capture beam shape at higher deflections.

Static midpoint deflection of a 5 µm gap actuator with
mirror (such as that depicted in figure 1) was measured using
a white light interferometer. Table 3 lists the actuator design
dimensions (similar to the case study described in table 2).
Actual devices are subject to manufacturing variations that
will affect device behavior. Thus, the table also cites
the process standard deviation for two critical dimensions
(actuator thickness and gap height). The mirror is connected
to the actuator by an attachment post. The anchors on the two
ends of the actuator are 240 µm long and 80 µm wide. They
consist of captured PSG oxide (232 µm × 72 µm) surrounded
by a 4 µm wide wall of polysilicon.

Predicting the deflection based on the above analysis
method requires an assumption about the compressive residual
stress. Figure 9 shows a comparison of measured static
deflection data and predicted deflection assuming a residual
compressive stress of 29 MPa. The solid ‘modeled’ curve
is based on equation (14). Note that stiffening due to beam
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Figure 8. Comparison of uniform load mode shape to finite-element prediction.

stretch tends to flatten the curve to an extent not seen in the
experimental data. The FEA result with rigid supports is also
shown. The FEA result does not agree with the modeled
result as well as in figure 7 because the high residual stress
(29 MPa) alters the FEA mode shape to an extent that it does
not match the uniform load mode shape as closely. Similar
to the ‘modeled’ curve, the ‘FEA, rigid supports’ curve is
much flatter than the experimental one. Next, we modified
the FEA result to allow the end support structures to deflect.
As shown in figure 9, that modification resulted in greater
deflection values but did not come any closer to replicating
the experimental result. The flatness of the modeled and FEA
results is due to stiffening from beam stretch. For the beam
(or plate) to deflect, it must also lengthen. The shape of the
experimental curve suggests that the amount of strain stiffening
is less than predicted. If we reduce the contribution of the beam
stretch term in equation (14) by 90%, the predicted midpoint
deflections match the experimental result well. Figure 9
shows this result, in which the ‘beam stretch factor’ (or BSF)
is 0.1.

We conclude two things from the results in figure 9.
First, our finite-element results do not adequately describe
the deflections of the entire force loop (anchors, substrate);
others have noted the significant effect of anchor compliance
on actuator behavior [16, 17]. Second, the simple uniform
load model becomes less accurate as midpoint deflection and
residual stress increase.

4. Dynamic analysis

The goal of the dynamic analysis is to develop a simple model
for estimating first mode natural frequency. The equations of
motion can be derived using Lagrange’s equation:

L = T − π. (16)

The kinetic energy T is

T = 1

2
m′

beam

∫ L

0
ẋ2 dy, (17)

where m′
beam is the mass per unit length of the beam. With

a third-order expansion of the electrostatic potential energy
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Figure 9. Comparison of measured and modeled static deflection for 5 µm gap actuator.

Table 3. Design dimensions for the experimentally tested micromirror with process standard deviation indicated for t and go.

Actuator material Polysilicon
Actuator membrane width (w) 240 µm
Actuator membrane length (L) 240 µm
Actuator membrane thickness (t) 2 µm (σ = 26 nm)
Gap height (go) 5 µm (σ = 57 nm)
Mirror area 300 µm × 300 µm
Mirror layer thickness 3 µm
Post size 20 µm long, 2 µm wide and 2.5 µm high

term, π is

π = 1

2
EI

∫ L

0
(x ′′)2 dy +

1

8
EA

∫ L

0
(x ′)4 dy

− 1

2

∫ L

0
Fa(x

′)2 dy − 1

2

εowV 2

go

×
∫ L

0

(
1 +

x

go
+

x2

g2
o

+
x3

g3
o

)
dy. (18)

The dynamic mode shape, assuming one mode, is

x(y, t) = φ(y)q(t). (19)

The Lagrangian L is then

L = 1

2
m′

beamq̇2
∫ L

0
φ2 dy − 1

2
EIq2

∫ L

0
(φ′′)2 dy

− EA

8
q4

∫ L

0
(φ′)4 dy +

1

2
Faq

2
∫ L

0
(φ′)2 dy

+
εowV 2

2go

∫ L

0

(
1 +

φ

go
q +

φ2

g2
o

q2 +
φ3

g3
o

q3

)
dy. (20)

Applying Lagrange’s equation

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0, (21)

the dynamic equation is

Mq̈ + Kq + �q2 + 	q3 = BV 2, (22)

where

M = m′
beam

∫ L

0
φ2 dy = mbeam

L

∫ L

0
φ2 dy, (23)

K = EI

∫ L

0
(φ′′)2 dy − Fa

∫ L

0
(φ′)2 dy

− εowV 2

g3
o

∫ L

0
φ2 dy, (24)

� = −3εowV 2

2g4
o

∫ L

0
φ3 dy, (25)

	 = EA

2

∫ L

0
(φ′)4 dy, (26)

B = εow

2g2
o

∫ L

0
φ dy. (27)

For the uniform load mode shape,

φ(y) = y4 − 2Ly3 + L2y2. (28)

Equations (23)–(27) become

M = mbeamL8

630
, (29)

K = 4

5
EIL5 − 2

105
FaL

7 − εowV 2L9

630g3
o

, (30)

� = −εowL13

8008
V 2, (31)

	 = 4EAL13

15 015
, (32)

B = εowL5

60g2
o

. (33)
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At the beam’s midpoint,

xL/2(t) = φ(L/2)q(t). (34)

Substituting L/2 into equation (28) yields

φ(L/2) = L4

16
. (35)

Rearranging equation (34) and substituting for φ,

q(t) = 16

L4
xL/2(t). (36)

Substituting for q and simplifying, the dynamic equation is
now

mbeamẍL/2 +

(
504EI

L3
− 12Fa

L
− εowL

g3
o

V 2

)
xL/2

−
(

180εowL

143g4
o

V 2

)
x2

L/2 +

(
6144EA

143L3

)
x3

L/2

= 21εowLV 2

32g2
o

. (37)

For comparison to the beam stiffness as described in
equation (2), the dynamic equation is rewritten as

16

21
mbeamẍL/2 +

(
384EI

L3
− 64Fa

7L
− 16εowL

21g3
o

V 2

)
xL/2

−
(

960εowL

1001g4
o

V 2

)
x2

L/2 +

(
32 768EA

1001L3

)
x3

L/2 = εowLV 2

2g2
o

.

(38)

For small midpoint deflections, the x2
L/2 and x3

L/2 terms are
neglected, and the natural frequency of the beam actuator is

ωn =

√√√√ 384EI
L3 − 64Fa

7L
− 16εowL

21g3
o

V 2

16
21mbeam

. (39)

The dynamic equation of motion can also be linearized for the
case of small dynamic motions about a dc offset by setting
xL/2 = xo + δx and V = Vo + δV. After discarding terms
containing (δx)2, (δV)2 and δxδV, the equation of motion
becomes
16

21
mbeamδẍ +

[
384EI

L3
− 64Fa

7L
− 16εowL

21g3
o

×
(

1 +
1920

1001

xo

go

)
V 2

o +
98 304EA

1001L3
x2

o

]
δx

= εowL

2g2
o

(
δV + 2Vo +

64

21

xo

go
Vo +

3840

1001

x2
o

g2
o

Vo

)
δV, (40)

and the natural frequency is

ωn =

√√√√ 384EI
L3 − 64Fa

7L
− 16εowL

21g3
o

(
1 + 1920

1001
xo
go

)
V 2

o + 98 304EA
1001L3 x2

o

16
21mbeam

.

(41)

To use equation (41), the static midpoint deflection xo must
first be calculated as described in section 2. Note that the
electrostatic terms (with V2 in them) have a softening effect
while the beam stretch terms (with EA) have a stiffening effect.

In the actual system, the actuator layer has a post at
the center that supports a mirror above the actuator layer.
Assuming that the mirror and post do not affect the beam’s

EI and that the mirror and post can be modeled with a point
mass, the kinetic energy is then

T = 1

2
m′

beam

∫ L

0
ẋ2 dy +

1

2
mmirrorẋ

2
L/2. (42)

After modifying the Lagrangian, equation (29) becomes

M = mbeam
L8

630
+ mmirror

L8

256
. (43)

The effective mass is then

meff = 16
21mbeam + 15

8 mmirror (44)

and

ωn =

√√√√ 384EI
L3 − 64Fa

7L
− 16εowL

21g3
o

(
1 + 1920

1001
xo
go

)
V 2

o + 98 304EA
1001L3 x2

o

16
21mbeam + 15

8 mmirror
.

(45)

5. Dynamic model validation

Dynamic behavior of a micromirror with the dimensions
outlined in table 3 was measured with a laser Doppler
velocimeter. Figure 10 shows the measured frequency
responses at dc offset voltages ranging from 0 to 125 V. The
damped resonant frequency decreases from 68 to 64 kHz (a 6%
reduction). Because the air pressure was low (3 Torr) in these
tests, squeeze film effects should play a negligible role.

Resonant frequency was predicted using equation (45).
Figure 11 shows resonant frequency as a function of offset
voltage. At low voltages, resonant frequency decreases
with increasing voltage. However, at higher voltages, strain
stiffening causes the resonant frequency to increase. The
absence of the strain stiffening effect in the experimental
data suggests that unmodeled compliance in the force loop
is counteracting the predicted stiffening effect. Inserting a
coefficient of 0.1 in front of the EA/L term in equation (45)
produces predictions closer to the experimental values. These
are shown as the dotted line in figure 11.

6. Squeeze film effects

The air between two parallel plates can vent to dampen energy
or compress to store energy. At low speeds, when air has time
to escape, the air film dampens motions. At high speeds, when
the air has less time to escape, the air film acts as a spring. The
micromirrors in our application have a fixed–fixed deformable
plate as the actuator layer. Modeling the effects of the squeeze
film layer on this type of plate or beam is complex (see, for
example, [15]). We investigated the utility of a simpler rigid
beam model for our system. Thus, the squeeze film spring and
damper (kair and bair) are modeled in parallel with the flexure
spring kflex and the inherent material damping bmat’l as shown
in figure 12. Note that kair and bair are functions of frequency
and gap g.

For kair and bair we adopt the model of Darling [14]. For
parallel plates with venting on two opposite sides, the reaction
force on the plate due to motion through the air is
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Figure 10. Experimental frequency responses of the micromirror at six different offset voltages.

Figure 11. Effect of offset voltage on resonant frequency.

 

 

 

Figure 12. Lumped parameter model of the electrostatic actuator in
air.

F = − 8jωx

π2gavg
(Lwpamb)

∑
n=odd

1

n2
(
jω + k2

n

/
α2
) , (46)

where

α2 = 12µ

g2
avgpamb

(47)

and

k2
n = n2π2

w2
(48)

and where pamb is the ambient air pressure, L is the length of
plate, w is the width of plate, x is the plate displacement, go

is the nominal gap and µ is the gas (air) viscosity. The spring
component of this force is the real part while the damping
component is the imaginary part. Thus,

kair = Re(F)

x
, (49)

bair = Im(F )

xω
, (50)

or

kair = 1152µ2ω2L

π2pamb

(
w

gavg

)5 ∑
n=odd

1

n2

1

n4 +
(

ω
ωc

)2 , (51)

bair = 96µL

π4

(
w

gavg

)3 ∑
n=odd

1

n4 +
(

ω
ωc

)2 , (52)

where ωc, the cut-off frequency, is

ωc = π2pamb

12µ

(gavg

w

)2
. (53)

When ω � ωc, the viscous force dominates over the spring
force. When ω approaches ωc, the spring forces become
significant and cannot be neglected.
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Figure 15. Micromirror design with rigid actuator layer.

Figures 13 and 14 show how kair and bair change with
frequency and air pressure according to Darling’s model.
The following parameter values were used: µ = 1.862 ×
10−5 N s m−2, gavg = 4.5 µm, L = w = 240 µm. The first six
terms of the summation (up to n = 11) were used. According to
figure 13, kair increases with frequency and eventually reaches
a steady state. The steady-state (maximum) stiffness increases
with ambient pressure. As shown in figure 14, damping
decreases with frequency. It decreases most rapidly at low
pressures. Because the model described above applies only
to flat parallel plates, it can be most readily applied to a
micromirror design with a rigid actuator layer as shown in
figure 15.

Damped natural frequency for this design can be found as
follows:

fd = 1

2π
ωd, (54)

ωd = ωn

√
1 − ζ 2, (55)

ωn =
√

keff(ω)

m
. (56)

The damping coefficient is

ζ = bmat′l + bair(ω)

2mωn

. (57)

The effective stiffness is found by linearizing the equation of
motion around a dc offset. The equation of motion (with a
second-order expansion of the electrostatic force) is

mδẍ +

[
kflex + kair − εowLV 2

o

(go − x)3
− 3εowLV 2

o δx

2(go − xo)4

]
δx

= εowLVo

(go − xo)2
δV +

εowL

(go − xo)2
(δV )2. (58)

The effective stiffness is

keff = kflex + kair − εoAV 2
o

2(go − xo)2

[
2

go − xo
+

3

(go − xo)2
δx

]
.

(59)

If a first-order expansion were assumed, the stiffness would be

keff = kflex + kair − εoAV 2
o

(go − xo)3
. (60)

Note that ωd depends on kair and bair. However, kair and bair

depend on ω. Thus, some iteration is required to find kair, bair

and ωd. Table 4 shows estimates of damped natural frequency
calculated using equations (51)–(57) for the case of Vo = 80 V
(xo = 501 nm). The effective stiffness keff is calculated
assuming a zeroth-order electrostatic force expansion (first
two terms of equation (59)) and with first- and second-order
expansions (equations (60) and (59), respectively). Note that
pressure causes significant increases in the damped natural
frequency. As pressure increases, kair and bair grow larger
than kflex and bmat’l. The table results suggest that the first-
order approximation for electrostatic force is sufficient in this
case.
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Table 4. Estimates of damped natural frequency that include squeeze film effect and electrostatic force correction. Conditions: L = w =
240 µm, kflex = 160 N m−1, m = 7.0 × 10−10 kg, go = 5 µm, V = 80 ± 1 V (xo = 0.501 µm, δx = 16 nm at low frequencies), bmat’l = 2 ×
10−5 N s m−1.

p (Torr) fd (kHz) (zeroth order) fd (kHz) (first order) fd (kHz) (second order) kair (N m−1) bair (N s m−1)

0 76.1 67.1 67.1 0 0
1 76.5 67.5 67.5 1.64 8.8 × 10−8

50 91.0 83.4 83.3 68.6 3.3 × 10−5

120 104.6 97.6 97.5 144 1.0 × 10−4

300 114.8 104.5 104.4 220 3.3 × 10−4
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Figure 16. Simulated frequency response showing the effect of air
pressure.

A Simulink model that incorporates the exact (no binomial
approximation) nonlinear electrostatic forcing function was
used to generate time response data for a sinusoidal voltage
input. The composite k (kair + kflex) and b (bair + bmat’l) were
changed each time the input frequency was changed based
on the above relations. The magnitude of the displacement
output was recorded over a range of frequencies as shown in
figure 16. Note that the peak frequencies agree with those in
table 4.

A micromirror was placed in a small benchtop vacuum
chamber with a viewing window. Dynamic behavior was again
measured using a laser Doppler velocimeter. Figure 17 shows
frequency response for five different ambient pressures at a
dc offset voltage of 100 V. The damped resonant frequency
increases from 66 to 96 kHz (45% increase) when the ambient
pressure increases from 3 to 100 Torr. At 402 and 760 Torr, the
system is overdamped and presents no resonant peak. At 100 V
dc offset and 3 Torr ambient pressure, the model described
above predicts a damped resonant frequency of 66 kHz if kflex

is set to 183 N m−1. With that kflex at 100 Torr, the model
predicts a resonant frequency of 95 kHz (very close to the
96 kHz of the actual micromirror). The similarity in the actual
and predicted effects suggests that the rigid actuator squeeze
film model can give useful design information for fixed–fixed
deformable beams.

The squeeze film also causes interesting step response
behavior. Veijola et al [11] developed a model for predicting
frequency and step response of a silicon accelerometer as a
function of gas pressure. The step response at 300 Pa has
some unusual behavior: a fast initial response is followed by a
slower rise to the final value. When first actuated, the gas film
acts mostly as a spring thus giving the system a high bandwidth
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Figure 17. Measured frequency response of the micromirror at five
different ambient pressures.
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Figure 18. Measured step response of the micromirror.

and fast response. After the first millisecond, however, the gas
film has a dampening effect. We observed similar behavior
when testing micromirrors. Figure 18 shows step response
as measured by laser Doppler velocimeter. The mirror was
actuated by a square wave oscillating between 135 and 145 V.

7. Conclusions

Many models have been developed by others to describe the
static and dynamic behaviors of parallel-plate electrostatic
actuators. Our goal was to develop and/or adopt models
that are convenient to use in the design of MEMS spatial
light modulators. For predicting static deflection, our model
requires only that the roots of a third-order equation be found
(see equations (14) and (15)). The natural frequency assuming
small motions about a dc offset can be calculated quickly using
equation (45). Finally, the effect of ambient pressure on natural
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frequency and damped natural frequency can be approximated
from equations (51)–(57) and (60).

The static model results match FEA predictions closely
except at the highest displacements where the model
underpredicts displacement. Relative to actual device
displacement, both the analytical model and FEA underpredict
displacement at high displacement levels. In other words, the
actual device does not exhibit as much stiffness as predicted
at high displacements. This appears to be due to unmodeled
compliance in the force loop. By limiting the amount of
stiffening introduced by beam stretch, the model can be
matched to the experimental data.

The natural frequency of the real devices decreases as
dc offset voltage increases. The dynamic model includes
two competing effects: stiffening due to beam stretch (which
tends to increase natural frequency) and softening due to
the nonlinear electrostatic force (which tends to decrease
it). The analytical model agrees with experiment only if the
beam stretch contribution is reduced by the same amount as
described above for the static case.

Squeeze film effects were determined by adopting a model
that had been developed for rigid parallel plates. Although the
actuator plates in the real devices bend, the rigid plate model
adequately predicts the effect of ambient pressure on damped
natural frequency.
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