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The imaging performance of an optical microscope can be degraded by sample-induced aberrations. A general
strategy to undo the effect of these aberrations is to apply wavefront correction with a deformable mirror (DM). In
most cases the DM is placed conjugate to the microscope pupil, called pupil adaptive optics (AO). When the
aberrations are spatially variant an alternative configuration involves placing the DM conjugate to the main
source of aberrations, called conjugate AO. We provide a theoretical and experimental comparison of both con-
figurations for the simplified case where spatially variant aberrations are produced by a well-defined phase screen.
We pay particular attention to the resulting correction field of view (FOV). Conjugate AO is found to provide a
significant FOV advantage. While this result is well known in the astronomical community, our goal here is to
recast it specifically for the optical microscopy community. © 2015 Optical Society of America
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1. INTRODUCTION

Objects become blurred when they are imaged through scatter-
ing media. This has been a longstanding source of frustration
for optical microscopists, particularly in biomedical imaging
where objects of interest are routinely embedded within scat-
tering media or behind aberrating surfaces. A well-known strat-
egy to counteract aberrations makes use of adaptive optics
(AO), as borrowed from astronomical imaging [1,2]. The idea
of adaptive optics is to insert an element in the imaging optics,
typically a deformable mirror (DM), that imparts inverse aber-
rations to the imaged light, thus compensating for the aberra-
tions induced by the sample or by the microscope system itself.
In most cases, the DM is inserted in the pupil plane of the
microscope optics. Such a DM placement is appropriate when
the aberrations to be compensated are spatially invariant, as
in the case when they are produced by an index of refraction
mismatch at a flat interface. But another reason for placing the
DM in the pupil plane seems more historical, and largely a
carryover from astronomical AO. However, the requirements
for astronomical AO are very different from microscopy AO.
In astronomical AO, one is usually interested in only very small
(angular) fields of view and it is important to bring all the DM
actuators to bear on single, localized objects at a time. In
microscopy AO, particularly involving widefield (i.e., nonscan-
ning) configurations, the opposite is usually true and it is de-
sirable to perform AO over as large a field of view (FOV) as

possible. In the more general case when sample-induced aber-
rations are spatially variant as opposed to invariant, a placement
of the DM in the pupil plane turns out to be a poor choice as it
imposes a severe limitation on FOV [3]. A better choice is
to place the DM in a plane conjugate to the plane where
the aberrations are the most dominant, and hence deleterious.
This is called conjugate AO. The purpose of this manuscript is
to highlight the differences between conjugate and pupil AO,
particularly where FOV is concerned, both theoretically and
experimentally.

To begin, we emphasize that what will be said here is not
new. It is well known [4–7] in the astronomical imaging com-
munity that the FOV (or “seeing”) can be extended with the
use of conjugate AO. In this case, it is assumed that the most
important aberrations are produced by turbulence from a
well-defined layer in the atmosphere, and the DM is placed
conjugate to this layer. This strategy can be generalized to mul-
ticonjugate adaptive optics (or MCAO) where multiple DMs
are conjugated to multiple atmospheric layers.

The principle of MCAO, though well understood in the
astronomy community, seems to be less appreciated in the
microscopy community [8]. A few reports have discussed
various benefits of MCAO in the context of microscopy [9,10],
though these have relied on numerical simulation only. MCAO
has also been used in retinal imaging applications [11] and
in benchtop experiments designed to simulate astronomical
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imaging [12]. Our goal here is to build on these results by
providing a theoretical framework specifically tailored to the
microscopy community. We limit our considerations to the
simplified case where spatially variant aberrations are assumed
to arise from a single layer only. While such a case may seem
overly idealized, it serves to highlight the salient features of
conjugate AO regarding FOV, which is our goal here. It also
becomes relevant, for example, in subsurface imaging applica-
tions where the dominant aberrations arise from irregularities at
the sample surface, as is common in practice.

Our manuscript is organized as follows. We begin by de-
scribing the effect on imaging of an aberrating layer an arbitrary
distance from the focal plane. We then consider the effects of
compensating these aberrations by placing a DM first in the
pupil plane and then in the plane conjugate to the aberrating
layer. We concentrate our discussion on the implications for
FOV. Finally, in the second half of this manuscript, we support
our theoretical results with proof of principle experiments
involving image-based AO with a calibrated object and a bio-
logical sample, for demonstration purposes. Our goal is to lay
the groundwork for future bona fide microscopy applications.

2. EFFECT OF A SINGLE ABERRATING LAYER

We consider a telecentric microscope system, which, for sim-
plicity, we take to have unit magnification (see Fig. 1). The
complex object field located at the focal plane is given by
E0�ρ�, where ρ is a 2D lateral coordinate. This field is assumed
to be quasi-monochromatic of average wavelength λ. Field
propagation through the microscope is taken to be through free
space, except for the presence of a thin aberrating layer located a
distance z from the object, modeled as a thin phase screen of
transmission t�ρ� � eiϕ�ρ�, where ϕ�ρ� is a local (real) phase
shift. Throughout this discussion we will adopt the paraxial,
or Fresnel, approximation, meaning we will consider only
propagation angles that are small. Implicitly, this means we
assume our phase screen is forward scattering only, meaning
the lateral extent of its phase features is typically larger than
λ (more on this later).

As far as our imaging device is concerned, the object field
E0�ρ� propagating through the phase screen t�ρ� is equivalent
to an effective, albeit scrambled, field E�ρ� propagating
through free space. We can derive E�ρ� by propagating E0�ρ�
to the phase screen, multiplying it by t�ρ�, and propagating it
back to the focal plane. Using standard Fresnel propagation
integrals, we find

E�ρ� �
ZZ

ei2πκ⊥ ·�ρ−ρ 0�E0�ρ� zλκ⊥�t�ρ 0�d2ρ 0d2κ⊥; (1)

where κ⊥ is a 2D transverse spatial frequency and λκ⊥ may be
interpreted as a propagation angle (we have adopted similar

notation as in [13]). In keeping with the paraxial approxima-
tion, the integral over κ⊥ is assumed to span a range such that
λκ⊥ ≪ 1. In reality, the range of κ⊥ will become even more
restricted by our microscope pupil, but we do not consider this
yet. Equation (1) is taken to be valid independent of our im-
aging device and will be the starting point of our discussion.

Ultimately, we will use a camera to form an image, and thus
we are interested in recording intensities rather than fields.
With this in mind, we evaluate the mutual intensity of E�ρ�,
defined as J�ρc ; ρd � � hE�ρc � 1

2 ρd �E��ρc − 1
2 ρd �i, where

h…i corresponds to a time average. A tedious calculation yields

J�ρc; ρd� � ⨌ ei2πκ⊥d ·�ρc−ρ 0
c�ei2πκ⊥c·�ρd−ρ

0
d�

J0�ρc − zλκ⊥c; ρd − zλκ⊥d�Γ0�ρ 0
c; ρ 0

d�
d2ρ 0cd2ρ 0dd

2κ⊥cd2κ⊥d; (2)

where we have introduced the function Γ0�ρc ; ρd � � t�ρc � 1
2 ρd �

t��ρc − 1
2 ρd �.

So far, we have made no assumptions regarding the object
field E0�ρ�. We now make the assumption that it is spatially
incoherent, as is the case, for example, when imaging fluores-
cence. That is, we formally write J0�ρc; ρd� ≈ λ2I0�ρc�δ2�ρd�,
where the prefactor λ2 is introduced for dimensional consis-
tency, but also because the coherence area of radiating spatially
incoherent fields is roughly λ2. Equation (2) then simplifies to

J�ρc; ρd� �
1

z2

ZZZ
ei2πρd ·�ρc−ρ 0

c�∕zλei2πκ⊥c·�ρd−ρ
0
d�

I 0�ρc − zλκ⊥c�Γ0�ρ 0
c; ρ 0

d�d2ρ 0cd2ρ 0
dd

2κ⊥c: (3)

In other words, even though the actual object field E0�ρ�
is taken to be spatially incoherent, the apparent object field
E�ρ� may develop spatial coherences owing to the presence
of the phase screen, a result that stems, in part, from the
Van Cittert–Zernike theorem (e.g., see [13]). Let us examine
these spatial coherences more closely. To do this, we make
some assumptions regarding the phase screen.

Up to this point, our calculations have been similar to those
encountered in astronomical imaging through a turbulent
atmosphere [2]. In the latter case, the phase fluctuations
imparted by t�ρ� are assumed to be random in time and long
image exposures are taken such that Γ0�ρc ; ρd � can be reduced
to its wide-sense stationary representation Γ0�ρd �, which is
independent of ρc . We cannot perform such time averaging
here because, in contrast to atmospheric turbulence, our phase
screen is assumed to be static. Nevertheless, Γ0�ρc ; ρd � is not
isolated in Eq. (3), but rather occurs inside an integral. We
make an approximation of ergodicity by writing

Z
e−i2πκ⊥·ρcΓ0�ρc; ρd�d2ρc ≈ δ2�κ⊥�Γ0�ρd �: (4)

In effect, we assume that the phase screen is situated far
enough from the focal plane that light arising from any object
point traverses a phase-screen area large enough to encompass
many uncorrelated, statistically homogeneous phase features.
With this approximation, E�ρ� also becomes spatially incoher-
ent, and Eq. (3) reduces toFig. 1. Basic microscope layout.
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I�ρ� ≈
ZZ

e−i2πκ⊥ ·ρ 0I 0�ρ� zλκ⊥�Γ0�ρ 0�d2ρ 0d2κ⊥: (5)

We recall that I�ρ� is the apparent object intensity at the
focal plane resulting from the propagation of the actual object
intensity I0�ρ� through the phase screen. This equation bears
resemblance to and is essentially the intensity equivalent of
Eq. (1), valid for spatially incoherent object fields. We note
that we still have not considered the imaging device in our
calculations. However, when we do, because the apparent
object field remains spatially incoherent, we need only to in-
voke the intensity point spread function (PSF), as opposed
to the amplitude PSF, to evaluate the resultant image.

To make further progress, we must make some assumptions
regarding Γ0�ρ�. Conventionally [14], this is done by writing
Γ0�ρd � � hexp�iϕ�ρc � 1

2 ρd� − iϕ�ρc − 1
2 ρd��i, where h…i

now refers to an average over ρc. Assuming ϕ�ρ� are
Gaussian random processes of zero mean, we find
Γ0�ρd � � exp�− 1

2D�ρd ��, where D�ρd � � h�ϕ�ρc � 1
2 ρd�−

ϕ�ρc − 1
2 ρd��2i is the structure function of the phase variations.

Taking these variations to be statistically homogeneous, and
characterized by a variance σ2ϕ and normalized spatial autocor-
relation function γ0�ρd �, we obtain

Γ0�ρd � � e−σ
2
ϕ�1−γ0�ρd ��; (6)

or, equivalently,

Γ0�ρd � � e−σ
2
ϕ � e−σ

2
ϕ
�
eσ

2
ϕγ0�ρd � − 1

�
: (7)

The advantage of Eq. (7) is that it identifies the effects of
the phase screen on ballistic (first term) and scattered (second
term) light propagation. We adopt the model here that the
phase variations are correlated in a Gaussian manner over a
characteristic length scale lϕ, such that γ0�ρd � � e−ρ

2
d∕l

2
ϕ .

Plots of γ0�ρd � are illustrated in Fig. 2 for various values of σ2ϕ.
To gain further insight into the problem, we recast Eq. (6)

yet again in the form

Γ0�ρd � ≈ e−σ
2
ϕ � �

1 − e−σ
2
ϕ
�
γ0
�
ρd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2ϕ

q �
: (8)

Equation (8) is found to be an excellent approximation to
Eq. (6) for values of σ2ϕ much smaller and much larger than
one, and only deviates slightly from Eq. (6) when σ2ϕ is close

to one. We thus adopt it as a general expression for Γ0�ρd � since
it provides much clearer insight into its physical meaning.

As an example, let us consider the object to be a point source
located at the origin of the focal plane. That is, we write
I 0�ρ� � λ2I 0δ2�ρ�. Plugging this into Eq. (5), we find the
effective object intensity to be

I�ρ� � 1

z2
I 0

Z
e−i2πρ·ρ 0∕zλΓ0�ρ 0�d2ρ 0: (9)

Propagating this intensity through our imaging device and
making use of Eq. (9), we derive an effective PSF given by

PSF�ρ� � e−σ
2
ϕPSF0�ρ� � �1 − e−σ2ϕ� 1

πζ2
e−ρ2∕ζ2 ; (10)

where PSF0�ρ� is the initial device PSF absent the phase screen,

and we introduce the length scale ζ � zλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2ϕ

q
∕πlϕ. A plot

of this effective PSF is illustrated in Fig. 3. We observe that it
features two components. The first is an attenuated version of
the initial PSF0, leading to a sharp, diffraction-limited peak
that is attenuated because of loss of ballistic light due to scat-
tering. The second is a broad pedestal resulting from scattering
due to the phase screen. An increase in ζ caused, for example,
by an increase in z leads to an increase in the pedestal width
and a concomitant decrease in its height. The proportion of the

effective PSF that remains ballistic is e−σ
2
ϕ , while the rest is

scattered. Clearly, as σ2ϕ increases the effective PSF becomes
progressively more diffuse.

Some comments on the validity of Eq. (10). To begin, we
recall that we have limited ourselves to small propagation an-
gles. ζ must therefore be smaller than z, meaning we implicitly

assume λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� σ2ϕ

q
∕lϕ ≪ 1. Moreover, in assuming that the

light from the point object samples many phase-screen corre-
lation areas, we implicitly restrict the microscope NA to values
much larger than lϕ∕z (while still satisfying the paraxial
approximation). In turn, this means that ζ is implicitly assumed
to be larger than the diffraction limited spot size λ∕2NA.
Bearing these assumptions in mind, we may evaluate the
Strehl ratio of our effective PSF, defined by S � PSF�0�∕
PSF0�0� ≈ λ2PSF�0�∕πNA2. For phase variances not so large
that the Strehl ratio is defined primarily by ballistic light we

Fig. 2. Plots of Γ0�ρ� for different values of σ2ϕ.

Fig. 3. Example of an effective PSF �ρ� after degradation by a phase
screen. The initial diffraction-limited PSF (PSF0) is reduced by a factor
e−σ

2
ϕ and rides on a broader blurred background of power 1 − e−σ

2
ϕ .
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obtain S � e−σ
2
ϕ . This result is the same as obtained for astro-

nomical imaging through a turbulent atmospheric layer [1].
How do we recover from the degradation in PSF �ρ� caused

by the phase screen? We turn now to two possible strategies
involving different AO configurations.

3. PUPIL AO

The most common AO configuration involves placing a DM in
the pupil plane of the imaging device. Wavefront correction is
then based either on knowledge gained from a direct measure-
ment of the aberrated wavefront at this plane (wavefront-
sensing-based AO), or by iterative trial and error to optimize
a user-defined image metric (image-based AO). In either case,
wavefront correction is designed to undo the effects of aberra-
tions on a particular spot in the object, typically the location of
a “guide star” [1], with the hope that the range of the correction
about this spot is large enough to encompass neighboring
objects of interest. In astronomy parlance, this range is called
“seeing” or the “isoplanatic patch.” Here, we call it the cor-
rected FOV of our microscope. Our goal in this section is
to derive an expression for this FOV.

To begin, we assume that the object spot whose wavefront we
would like to correct is located at the origin. This could be the
location of a fluorescent beacon (serving as a guide star), or of an
object point we have arbitrarily selected for image optimization.
To evaluate the aberrated wavefront produced by this spot, we
write the object field at this spot as E0�ρ� � λ2E0δ

2�ρ�.
Inserting this into Eq. (1), and performing a scaled Fourier trans-
form to calculate the resultant field at the pupil plane, we find

Ep�ξ� �
λ

f
E0

ZZ
e−i2πκ⊥ ·�ρ�

z
f ξ�eiπzλκ2⊥ t�ρ�d2ρd2κ⊥; (11)

where ξ is a 2D transverse coordinate in the pupil plane and f is
the focal length of the microscope objective (see Fig. 1). We ob-
serve that in the absence of a phase screen [t�ρ� � 1], Ep�ξ�
becomes a plane wave of constant amplitude λE0∕f that is uni-
formly spread across the pupil plane, as expected. In contrast,
when the phase screen is present Ep�ξ� becomes structured both
in amplitude and phase. To correct for this effect of the phase
screen, we can act on Ep�ξ� with a wavefront corrector. Ideally,
Ep�ξ� should be made into a plane wave again, meaning we
should flatten it both in amplitude and phase. However, wave-
front correctors such as DMs are never ideal and generally act on
phase only. The best we can do is to flatten the phase of Ep�ξ�
and leave its amplitude unchanged. Nevertheless, as we will
argue below, the consequences of applying phase-only wavefront
correction are not all that severe.

In effect, the DM is itself a phase screen whose transmission
function can be written as tdm�ξ�. To correct for the phase
variations in Ep�ξ�, the DM should impart its own phase var-
iations that are precisely the negative of those of Ep�ξ�. That is,
the DM should effectively phase conjugate Ep�ξ�. This occurs
when

tdm�ξ� �
E�
p �ξ�

jEp�ξ�j
: (12)

At this point, the math becomes difficult and we need to
introduce a simplification to proceed. Specifically, we replace

the denominator in Eq. (12) with the (constant) field ampli-
tude that would be present without the phase screen, and write

tdm�ξ� �
ZZ

ei2πκ⊥·�ρ�
z
f ξ�e−iπzλκ2⊥ t��ρ�d2ρd2κ⊥: (13)

This simplification has no effect on the average intensity
at the pupil plane, and we may justify it on the grounds that,
with the aid of the approximation in Eq. (4), we maintain
jtdm�ξ�j ≈ 1, in agreement with the phase-only nature of our
DM. Nevertheless, this simplification does somewhat modify
the field statistics at the pupil plane, the ramifications of which
will be discussed below.

We recall that tdm�ξ� here is the shape applied to the DM
that performs optimal AO correction exactly at the origin of the
focal plane. We can now evaluate the spatial range, or FOV,
over which this correction remains effective. To do this, we
begin now with an arbitrary (albeit spatially incoherent) object
field. The effective field at the object plane that takes into
account the aberrations imparted by the phase screen is given
by E�ρ� in Eq. (1). To take into account the additional, hope-
fully corrective, effect of the DM, we propagate this field to the
pupil (a scaled Fourier transform), multiply it by tdm�ξ�, and
then propagate it back to the focal plane (a scaled inverse
Fourier transform). Using the same math and associated ap-
proximations as in the previous section, and keeping only dom-
inant phase correlations, we arrive at

I ao�ρ� ≈ I 0�ρ�Γ2
t �ρ�: (14)

This result is subject to the same conditions of validity as
before. Moreover, we have assumed that the DM spans the
entire pupil (not too small), and its actuators are sufficiently
dense to accurately represent tdm�ξ� (more on this below).

Equation (14) warrants scrutiny. I 0�ρ� is the actual object
intensity; I ao�ρ� is the effective object intensity as observed
through the phase screen and corrected by the pupil DM. The
window of AO correction is thus characterized by Γ2

t �ρ�. From
Eq. (6), we note that this window is equivalent to Γ0�ρ�, but
with a phase variance σ2ϕ that is effectively doubled. We can
thus recast it using the approximation provided by Eq. (8).
However, it is at this point that we introduce a small correction
to our results. Namely, we write

Γ2
t �ρd � ≈ e−2σ

2
ϕ � �

1 − e−2σ
2
ϕ
� π
4
γ0
�
ρd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2σ2ϕ

q �
: (15)

The reader can observe that we have introduced an extra
factor of π∕4 in the second term. The justification for this term
is as follows. We recall that the reason for separating Γ0�ρd �
into two terms was to better identify the ballistic and scattering
propagation components. The second term arises from light
that is scattered by the phase screen. For light that originates
from a point at the focal plane, the scattered component of this
light then impinges the pupil plane with spatially varying
amplitude and phase. Indeed this scattered component takes
on the characteristics of fully developed speckle [14] (fully
developed because we have removed from it all ballistic contri-
bution). Upon correcting the wavefront of this speckle field,
the best the DM can do is flatten its phase. The amplitude
distribution of the speckle field remains unchanged, meaning
it continues to obey Rayleigh statistics. In the typical case that
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the microscope pupil is physically smaller than the field distri-
bution at the pupil plane (i.e., there is some energy loss), then
the best the DM can do is yield a corrected image intensity
from this scattered light component that is π∕4 reduced com-
pared to the same component with no phase screen [15]. We
need to include this correction factor in Eq. (15) because our
derivation made use of Eq. (13) for the optimal DM profile
rather than the more correct Eq. (12).

As an aside, we note that the spatial extent of the speckle
grains at the pupil plane is inversely related to the spatial extent
of the aberrated intensity pattern at the object plane, and is thus
given by, roughly, λf ∕2ζ (akin to the Fried parameter in astro-
nomical imaging [16]). The DM actuators must be smaller
than this to avoid undersampling of tp�ξ�.

To summarize, Γ2
t �ρd � represents the window over which

pupil-based AO is effective. For phase variations of standard
deviation σϕ one radian or larger, this window is predominantly
defined by the second term and yields a FOV of diameter

a0 ≈ 2lϕ∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2σ2ϕ

q
. This FOV becomes narrower with in-

creasing phase variations, approaching the limit of
ffiffiffi
2

p
lϕ∕σϕ.

In other words, in the regime where the phase variations are
large (i.e., the regime where AO is potentially most useful!)
the FOV depends not on the characteristic scale lϕ of the aber-
rating features, but rather on their (inverse) characteristic slope.
This result is similar to a general result for imaging through
phase screens discussed in [14]. Moreover, the FOV is indepen-
dent of the location z of the phase screen. These observations
can readily be understood from Fig. (4). We recall that any
wavefront correction provided by a pupil-plane DM must
be spatially invariant in the sense that it must be imparted
equally to all object points. The wavefront correction can be
thought of, therefore, as figuratively tracking each object point.
However, for object points displaced from the guide star the
wavefront correction becomes rapidly uncorrelated with the
aberrations it is intended to correct. In this case, the correction
actually produces worse imaging than if there were no DM at
all, because it leads to the presence of two uncorrelated phase
screens in the imaging optics rather than one (hence the effec-
tive doubling of σ2ϕ). Because the microscope system is telecen-
tric, this FOV is independent of z.

We close this section with a reminder that our derivation of
a0 presumed that pupil AO was asked to optimize the image at
a single point only, namely, at the origin. One might wonder
what would happen if it were asked to optimize over a larger
region, say of size A. This problem is tantamount to optimizing
multiple guide stars simultaneously. Such simultaneous optimi-
zation is possible; however, it is known to lead to reduced
contrast enhancement at each guide star by a factor of N , the
number of guide stars [15]. That is, while pupil AO can, in
principle, correct over a range A larger than a0, the quality
of this correction, as measured by contrast enhancement, is ex-
pected to rapidly degrade as �a0∕A�2.

4. CONJUGATE AO

In the previous section, we characterized a problem (often
debilitating) of pupil-plane AO that it cannot provide extended
FOVs. This disadvantage was interpreted as arising from the
property that the pupil-plane AO wavefront correction effec-
tively tracks the different points in the object plane while the
aberrating phase screen remains fixed. A solution to this prob-
lem is clear. The wavefront correction should instead be locked
to the phase screen rather than to the object points. This can be
achieved by placing the DM conjugate to the phase screen it-
self, called conjugate AO.

What is the FOV associated with conjugate AO? Based on
the above interpretation, it is clear that the FOV must be the
size of the DM projected onto the phase screen. For example, if
the DM is conjugate to the phase screen with unit magnifica-
tion, then the FOV is the same size as the DM itself. Again,
since our microscope system is telecentric, this FOV is inde-
pendent of the z location of the phase screen, provided the
DM is maintained conjugate. However, one must be careful
with this last statement since there may be edge effects that
are dependent on z. Such effects are best appreciated with a
simple ray optic picture as shown in Fig. 5. The microscope
pupil defines a characteristic maximum cone size (i.e., NA)
of light that can be collected from any object point. If this cone
size is large enough that it spans the projected DM for all object
points within the FOV, then conjugate AO corrects equally

Fig. 4. Interpretation of what defines FOV for pupil AO. As an
object point ρ1 becomes displaced from the guide-star point ρ0, its
wavefront correction becomes uncorrelated with the fixed phase-screen
aberrations, and AO fails.

Fig. 5. Interpretation of what defines FOV for conjugate AO. The
fixed wavefront correction cancels the aberrations caused by the fixed
phase screen. The FOV is then limited by size of the projected DM
itself, albeit with blurred edges dependent on distance z of the phase
screen and the microscope NA.
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well throughout this FOV. On the other hand, if the cone size
is smaller (as shown), then the DM causes vignetting. This
vignetting begins to occur at distances roughly z NA from the
FOV edges (note: the DM here is assumed to be obstructing
beyond its edges). Nevertheless, despite this potential issue of
edge effects, it is clear (and well known [4]) that the FOV pro-
vided by conjugate AO can be significantly larger than that
provided by pupil AO.

5. EXPERIMENTAL DEMONSTRATION

The FOV advantage of conjugate AO can be demonstrated ex-
perimentally. In most cases, AO is applied in laser scanning
microscope configurations [17–27]. We apply it here instead
in a bright-field configuration. Our setup is illustrated in Fig. 6
and is basically a 1.33× magnification microscope modified to
accommodate a pupil or conjugate DM (Boston Micromachine
Corp. MultiDM, 140 actuators in a square 12 × 12 array with-
out the corner actuators, 400 μm actuator pitch). A thin trans-
mission object is transilluminated by a LED (660 nm). A thick
diffuser is inserted in the LED path, just before the object, to
ensure object spatial incoherence. The NA of the microscope is
about 0.04, as defined by a ≈8 mm diameter iris pupil. We
note that there is a factor of about two demagnification in
the imaging optics from this pupil to the pupil DM to properly
match their respective sizes. A mirror blank is inserted in the
place of the conjugate DM when the system is in a pupil DM
configuration, and vice versa. The camera is a Thorlabs
DCC1545M CMOS (pixel size 5.2 μm square).

To introduce spatially variant aberrations in our microscope,
we inserted a phase screen at a distance z (here 35 mm) from
the object. The phase screen consisted of a blank microscope
slide onto which was spray-painted a thin layer of clear acrylic.
The profile of this phase screen was measured by a Zygo
NT6000 white-light interferometer and exhibited rms phase
variations on the order of σϕ ≈ 9.5 rad (see discussion below),
corresponding to just about the limit of what can be corrected
by our DM based on its 3.5 μm peak-to-valley stroke. A char-
acteristic spatial scale of the phase variations was very roughly
estimated to be of order lϕ ≈ 1 mm, leading to an anticipated
pupil AO correction range of about a0 ≈ 150 μm.

Admittedly, a scenario where a large empty space separates
an object from an aberrating layer is unlikely to be found in
actual microscopy applications. The purpose of this experiment
is only to highlight some salient features underlying conjugate
versus pupil AO.

As noted previously, when AO is used in microscopy it is
typically applied to laser scanning microscopes where different
wavefront corrections are targeted sequentially to different
spots distributed throughout the sample. In our case, we wish
to apply AO in a nonscanning bright-field configuration. That
is, we wish to apply a single wavefront correction to the entire
image. To determine an optimized DM shape, we used an
image-based stochastic parallel gradient descent (SPGD) pro-
cedure that optimizes a particular image metric [28]. Here, the
metric was chosen to be the image contrast measured within a
user-selected square zone centered about the image origin (con-
trast being defined as the square root of the image variance
divided by the mean). The application of contrast-based wave-
front optimization works well when the object is a localized
guide star; however, it is known to fail when the object is
arbitrary and extended, since it tends to redistribute light into
mottled patterns rather than improve image sharpness. To
circumvent this problem we proceeded in two steps. First,
we inserted as an object an array of apertures at the focal plane
(see Fig. 7). This calibration object served as a well-defined
homogeneous array of guide stars, enabling contrast-based DM
optimization to perform adequately. Second, following DM
optimization (pupil or conjugate), we replaced the aperture
array with an object of interest, namely, a thin section of
H&E-stained mammal muscle tendon mounted on a micro-
scope slide (Carolina Biological Supply Co.).

The results for pupil AO are shown in Fig. 7. In this case,
the correction zone was chosen to be small, such that it spanned
only a single guide star (correction zones larger than this led to
DM iterations that failed to converge or increase contrast).
Clearly, pupil AO was effective at improving image quality
near the origin. However, just as clearly, it was ineffective at
improving quality even a small distance from the origin. The
same was true when we inserted the tissue sample, as can be
seen in Fig. 7. Based on the properties of the phase screen,
the FOV of the wavefront correction was expected to be about
a0 ≈ 150 μm, which is in rough agreement with experiment.

The results of conjugate AO are shown in Fig. 8. In this
case, we chose correction zones that were progressively in-
creased in size (only two of which are shown). As is apparent
both with the guide-star array and tissue sample, the resultant
FOV increases with correction zone size, approaching the size
of the full unaberrated image [Fig. 7(a)]. Of particular interest
are Figs. 8(a) and 8(c). The zone of correction here was
250 μm × 250 μm, meaning AO was asked to optimize the

Fig. 6. Experimental setup. Lens focal lengths are f 1 � 100 mm, f 2 � 100 mm, f 3 � 100 mm, f 4 � 200 mm, f 5 � 75 mm, and
f 6 � 50 mm. Solid vertical lines correspond to object planes; dashed vertical line correspond to pupil planes. Note that in reality the DMs
are reflective and the layout was doubly folded.
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contrast of the central guide star only. And yet clearly the result-
ant correction FOV is much larger than this. In this case, the
correction FOV corresponds roughly to the region of the phase
screen illuminated by the central guide star, as defined by the
microscope pupil. That is, it is of size roughly z NA.

Upon closer inspection of the corrected images near the
origin (Fig. 9), we observe that conjugate AO did not provide
quite as crisp a correction as pupil AO. One possible reason for
this is that only a few conjugate DM actuators contributed to
the correction of this small region, whereas for the pupil DM
all the actuators contributed. Conjugate AO may have thus
suffered from a slight problem of insufficient actuator sampling
(a problem that can be corrected with improved sampling).
Another possible reason is that edge effects may have under-
mined the correction efficacy.

Finally, we compare topography maps of the optimized DM
shapes with those of the phase screen itself (Fig. 10). The cor-
respondence is apparent, both in form and amplitude.
Specifically, we note a factor of ≈4 difference in topography
amplitude between the measured phase screen and DM shapes.
This arises in part from the impact of the acrylic topography on

its wavefront (the acrylic index of refraction ≈1.5 leads to an
optical path difference that is about half the local topographic
height). Another factor of two arises from the fact that our DM
operates in reflection mode, leading to an effective wavefront
doubling. In our case, the phase-screen aberrations were mea-
sured to be 1030 nm rms in wavefront, consistent with an
acrylic topography of 2060 nm, and corrected by a DM shape
of 514 nm rms. We recall that phase is related to wavefront
by ϕ�ρ� � 2π

λ W �ρ�.

Fig. 7. Experimental results for pupil AO. Uncorrected (DM flat)
images of an aperture array of period 200 μm (a) without and (b) with
the presence of an aberrating phase screen. (c) Same image after AO
correction that optimized contrast in a zone about the origin of size
250 μm × 250 μm (single guide star). Uncorrected images of tissue
section (d) without and (e) with a phase screen, and (f) after AO cor-
rection using the same DM pattern as established for (c). Image sizes
are 4 mm × 4 mm at the focal plane.

Fig. 8. Experimental results for conjugate AO. Images of aperture
array after AO correction that optimized contrast in a zone about
the origin of size (a) 250 μm × 250 μm (single guide star), and
(b) 4 mm × 4 mm (entire image). (c) and (d) are corresponding
images of tissue section.

Fig. 9. Recapitulation of results. 600 μm × 600 μm blowup of
zones about the origin taken from images of tissue section (a) uncor-
rected without aberrations, (b) uncorrected with aberrations, (c) pupil-
AO corrected, and (d) conjugate-AO corrected [taken from Fig. 8(d)].
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6. DISCUSSION

In view of the apparent FOV advantage of conjugate over pupil
AO, one may wonder why it is not more prevalent in the
microscopy community. There may be several reasons for this.
To begin, the most egregious aberrations caused by a sample
are often not those induced by laterally spatially variant sample
features but rather by a laterally invariant index of refraction
mismatch. In this case, conjugate AO does not help and pupil
AO is prescribed instead. Moreover, the sample may not exhibit
aberrations in the form of a single, dominant phase screen (as in
our idealized, and certainly contrived, demonstration experi-
ment), in which case there may be a difficulty in determining
an optimal DM location. Even in the case where there indeed
exists a well-defined, dominant aberrating layer, the placement
of the DM in its conjugate plane may not be so straightforward.
For example, in our experimental demonstration the DM was
placed a distance z beyond the nominal microscope image plane
(see Fig. 6). However, in the more usual case of a microscope
with magnificationM much greater than unity, the DM should
be placed instead a distance M 2z from the image plane. For
largeM this distance may be problematic and require additional

reimaging optics. There is also the issue of DM actuator size.
For pupil AO, the DM actuators should be smaller than λf ∕ζ;
for conjugate AO they should be smaller than lϕ, which, for
weak phase variance, is more restrictive by a factor ≈z∕f (mag-
nification notwithstanding). Finally, we must consider how the
DM optimization is actually performed. In our demonstration
experiment, we had the luxury of being able to swap in a guide-
star array to aid iterative image-based optimization. This is
generally not possible in practice, and an alternative solution
must be found. Ideally, it would be best to measure the aberra-
tions directly using a wavefront sensor; however, this becomes
problematic because standard wavefront sensors such as Shack–
Hartmann sensors [1] only work well with quasi-collimated
wavefronts. To the best of our knowledge, extended-source
wavefront sensors (e.g., [29–31]) have not yet been applied
to AO in microscopy configurations.

Nevertheless, the above caveats are generally technical in
nature. Considering the potentially significant FOV advantage
of conjugate AO, its future implementation, perhaps in con-
junction with pupil wavefront correction, may well prove to
become a new standard in AO applied to microscopy.
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