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We develop a novel data-driven method for deformable mirror (DM) control. The developed method updates both

the DM model and DM control actions that produce desired mirror surface shapes. The novel method explicitly

takes into account actuator constraints and couples a feedback-control algorithm with an algorithm for recursive

estimation of DM influence function models. We also explore the possibility of using Walsh basis functions for

DM control. By expressing the desired and observed mirror surface shapes as sums of Walsh pattern matrices, we

formulate the control problem in the 2D Walsh basis domain. We thoroughly experimentally verify the developed

approach on a 140-actuator MEMS DM, developed by Boston Micromachines. Our results show that the novel

method produces the root-mean-square surface error in the 14–40 nanometer range. These results can additionally

be improved by tuning the control and estimation parameters. The developed approach is also applicable to other

DM types such as segmented DMs. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.447879

1. INTRODUCTION

Deformable mirrors (DMs) are one of the main components of
adaptive optics (AO) systems [1,2]. A typical DM consist of a
reflective optical surface that is deformed by a set of actuators.
By precisely shaping the surface of a DM, we can compensate for
wavefront aberrations in AO systems [3–16].

In this paper, we consider the problem of developing control
algorithms for DMs. There are a large number of approaches
for DM control. A complete survey of all the methods goes
well beyond the length limits of this paper. Consequently, we
briefly mention only the most relevant or recent approaches.
Most of the DM control approaches are based on the follow-
ing control paradigm [17–21]. First, a linearized DM model
(influence function matrix) is estimated before a correction
process. Then, during this process, such a model is either
directly inverted or is used in conjunction with an iterative
feedback control algorithm to calculate the DM control actions.
During the control iterations, only DM control actions (control
voltages) are updated on the basis of the observed wavefront
aberrations, and the DM model is kept constant. The control
approaches that rely upon this control idea might not be able
to produce satisfactory wavefront correction performance in
at least two scenarios that can be encountered in practice. The
first scenario is when the DM behavior changes over time. For
example, an environment in which a DM operates might induce
temperature fluctuations that can create thermo-mechanical
deformations of mirror components as well as other effects that

can significantly alter the DM behavior [10,12,13,22–29]. This
is especially the case for optical systems operating in space and
for optical systems operating with high-power laser sources,
where the absorbed heat increases the temperature of optical
components. Also, DM temperature can be increased by the
heat generated by electrical components used to control the
actuators. The second scenario is when DM control actions
significantly deviate from points around which a linear DM
model is estimated. Significant deviations of control actions
from original linearization points excite DM nonlinearities.
Namely, most of the existing DM devices and prototypes exhibit
nonlinear behavior for sufficiently large magnitudes of control
actions that are necessary to correct for wavefront aberrations
with significant peak-to-valleys (PVs).

It is a well-known fact in control theory literature that control
methods that dynamically update model parameters on the
basis of available observations are able to cope with time-varying
dynamics, model uncertainties, and system nonlinearities.
These methods are referred to as adaptive control methods
[30,31]. Even in the case of linear systems, adaptive control
methods are more accurate, faster, and, in many cases, more
optimal than classical linear feedback algorithms. All these facts
motivate the development of an adaptive DM control method
in this paper. However, since the word “adaptive” has different
meanings in optics and control theory communities, in this
paper, we name the developed algorithm as the “dual-update”
control algorithm, in order not to confuse an interested reader.
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Under the term “dual-update” control algorithm, we under-
stand a control algorithm that is able to update both control
actions and a model (influence matrix) during DM operation.

To the best of our knowledge, adaptive control approaches
for DM control have received less attention and interest com-
pared with the classical optimal control approaches [16,32].
Thus, the approach proposed in [33] iteratively calibrates a DM
model during the correction process. The approach developed
in [34] uses a recursive least-squares method to dynamically
estimate a DM influence matrix during the correction process.
The main limitation of the approaches developed in [33,34] is
that they do not explicitly take into account actuator saturation
and actuation limits. A reliable control method has to take into
account actuator physical constraints and has to be able to deal
with actuator saturation. Recently, in [35] we have developed a
DM control approach that updates the DM model on the basis
of batches of observed wavefront data. This method takes into
account actuator saturation. Once the DM model is updated,
the correction process is performed in open loop. This method
is relatively slow since between the correction steps it requires
a relatively large number of wavefront samples to update the
model. Apart from these methods, adaptive filters have been
used in [36] to predict and control wavefront disturbances.

A widely used approach for DM control is to express the
observed wavefront using a Zernike modal basis. In this way,
we implicitly perform the spatial model-order reduction of the
DM control problem (the control problem is transformed from
the spatial domain to the Zernike basis domain). On the other
hand, for certain mirror types and for desired wavefront shapes
consisting of steep peaks and valleys, Walsh basis functions
might be a more suitable option than the Zernike basis functions
[37–39]. Apart from this, in the general case, since Walsh basis
functions are orthogonal, they can be used instead of Zernike
polynomials in classical adaptive optics applications.

In this paper, we develop a novel dual-update DM control
approach. The developed approach explicitly takes into account
actuator constraints and couples a feedback control algorithm
with a recursive estimation of the DM influence matrix. In this
way, we are able to dynamically update the DM model and at
the same time compute control actions that produce the desired
shape. Furthermore, by expressing the desired and observed
mirror surface shapes as sums of Walsh pattern matrices, we
formulate the control problem in the 2D Walsh basis domain.
We experimentally verify the developed approach on a 140
actuator MEMS DM, developed by Boston Micromachines.

The main contributions of this paper are summarized in the
sequel. In contrast to other adaptive DM control approaches
proposed in the literature, our approach explicitly takes into
account actuation limits and saturation. In this way, we can
avoid the loss of performance that happens if the actuator
control commands are in the saturation range. In addition,
we thoroughly experimentally investigate the performance
of Walsh basis functions for DM control. This is important
since only a handful of articles have explored the possibility of
using Walsh basis functions for wavefront reconstruction and
control [37–39], and the true potential of using Walsh basis
functions for DM control is largely unexplored. It should be
emphasized here that, although we have performed experiments
on a continuous face sheet DM, the developed control approach

is applicable to other DM types. The developed approach is
especially suitable for segmented DMs. Finally, we can easily
modify the developed control algorithm to use Zernike basis
functions instead of the Walsh basis functions.

This paper is organized as follows. In Section 2, we present the
procedure for approximating the mirror surface shape as a sum
of Walsh pattern matrices. In Section 3, we present the control
method. In Section 4, we present the experimental results. In
Section 5, we present conclusions and briefly discuss future
work.

2. MIRROR DEFORMATION REPRESENTATION
USING WALSH PATTERN MATRICES

In this section, we present a simple numerical procedure for
approximating the mirror surface shape as a sum of Walsh
pattern matrices.

DM surface deformation is usually represented by a matrix.
That is, every entry of this matrix is a DM surface deformation
at a fixed spatial location. We refer to this matrix as the mirror
deformation matrix. Let W 2Rn⇥n be the mirror deforma-
tion matrix, where n is the total size (measured in pixels) along
the x and y dimensions of the observed mirror surface. We
decompose this matrix as follows:

W ⇡

MX

p=1

MX

q=1

a p,q Zp,q , (1)

where a p,q 2R are coefficients, and Zp,q 2Rn⇥n are Walsh
pattern matrices with the entries that can either be �1 or 1. The
number n should be selected such that n= 2V , where V is a user-
selected positive integer. The total number of the Walsh pattern
matrices in Eq. (1) is equal to M2, where M  n. We form the
Walsh pattern matrices by using Walsh basis functions. Here,
it should be emphasized that, since this paper presents a proof
of concept and due to mathematical simplicity and brevity, we
use Walsh basis functions defined over a square domain. The
mirror surface shape can also be represented by using Walsh
basis functions defined over a circular domain (polar Walsh
basis functions) [40]. Consequently, the developed method
can easily be used in the case of circular correction domains.
However, even without using polar Walsh basis functions, with
some modifications, the approach based on square-domain
Walsh basis functions can be used for wavefront correction over
circular correction domains. This is experimentally demon-
strated in Section 4. On the other hand, the control approach
developed in Section 3 is practically independent of the type of
basis functions for expanding the mirror surface shape. Thus,
instead of using Walsh basis functions, we can also use Zernike
basis functions in the developed control approach.

In the sequel, we first introduce a procedure for constructing
the Walsh pattern matrices Zp,q . Then, we introduce a pro-
cedure for computing the coefficients a p,q . First, we choose the
constant V . We select the constant V such that a deformation
submatrix with the dimensions of 2V by 2V pixels is within the
limits of the maximal active mirror surface area that is observable
by the used sensor (for more details about the sensor used in our
experiments, see Section 4). In our case, we use V = 8 or V = 9,
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giving us the submatrices with the dimensions of 256 by 256,
and 512 by 512, respectively (see Section 4 for more details).

Let the entries of the vector �
(V )
i 2Rn , n= 2V , represent the

values of the Walsh function i of the order V . Here, the index i
takes the values from 1 to 2V . For example, for V = 2, the vec-
tors �

(2)
i , i = 1, 2, 3, 4, representing the Walsh basis functions

take the following forms:

�
(2)
1 =

2

64

1
1
1
1

3

75 , �
(2)
2 =

2

64

1
1

�1
�1

3

75 , �
(2)
3 =

2

64

1
�1
�1
1

3

75 ,

�
(2)
4 =

2

64

1
�1
1

�1

3

75 . (2)

The vectors �
(V )
i can easily be constructed by using the

MATLAB function hadamard(·). The rows of a matrix returned
by this function represent Walsh basis functions. However, the
Walsh basis functions that are represented by the rows of this
matrix are not arranged in increasing order. Consequently, the
rows of the matrix returned by the function hadamard(·) need
to be permuted. For more details, see the MATLAB tutorial
page [41] explaining the construction process of the Walsh basis
functions.

Once the vectors �
(V )
i are constructed, for selected V , we

use the following procedure to construct the Walsh pattern
matrices. First, we need to select the constant M, keeping in
mind several competing factors. Generally speaking, we have
to make a trade-off between representation accuracy that is
increased by increasing M and dimensions of the matrices
of the control algorithm that increase with the factor of M2.
Larger matrix dimensions increase the computational and
memory complexities of the decomposition process as well as
the computational and memory complexities of the control and
estimation algorithms that are introduced in Section 3. We have
tested the control algorithm for M up to 120, and this value is
sufficient for the desired shapes used in our experiments. Our
lab computer has 64 GB RAM, and for M � 120, the MATLAB
programming language that is used to control the DM runs
out of memory. Larger values of M are possible if the control
algorithm is implemented in a more memory-efficient way.
One of the possible pathways to decrease the computational
and memory complexities is to exploit the structure of the
control matrices using approaches similar to the approaches
developed in [11,42–50]. However, this requires additional
research, implementation, and testing efforts that are left for
future research.

Once we have selected V and M, we can proceed with the
construction of the pattern matrices. We perform the following
steps:

Step 1. We construct the matrices Z1,q 2Rn⇥n , where
q = 1, 2, . . . , M, and n= 2V . The matrix Z1,q is constructed
by transposing the vector � (V )

q and by stacking the newly formed
row vectors on top of each other n times:

Z1,2 Z1,3

Z3,1 Z3,2 Z3,3

Z2,1 Z2,2 Z2,3

Z1,1

Fig. 1. 2D Walsh pattern matrices. The yellow and blue colors cor-
respond to 1 and �1 values, respectively.

Z1,q =

2

66664

(� (V )
q )

T

(� (V )
q )

T

...
(� (V )

q )
T

3

77775
. (3)

Step 2. We construct the matrices Zq ,1, where q =

1, 2, . . . , M. The matrices Zq ,1 are constructed by transposing
the matrices Z1,q that are formed in Step 1, that is, Zq ,1 = ZT

1,q .
Step 3. We construct the matrices Zp,q , for the indices p � 2

and q � 2. The matrix Zp,q is calculated as follows:

Zp,q = Zp,1 � Z1,q , (4)

where � is the matrix element-wise product (Hadamard matrix
product).

A few comments about this construction procedure are in
order. The matrix Zp,q can be seen as a (p, q) block of a large
block matrix. The first block row of this matrix is constructed
in Step 1. In Step 2, we construct the first block column, where
every block is a transpose of the corresponding matrix in the first
block row. Then, in Step 3, we construct the remaining block
matrices by simply multiplying the matrices (element-wise
multiplication) belonging to the first block column with the
matrices belonging to the first block row. The constructed 2D
Walsh pattern matrices are shown in Fig. 1 for M = 3.

Next, we explain the decomposition process of the matrix
W , that is, we explain how to compute the coefficients a p,q in
Eq. (1) for known W . First, we vectorize Eq. (1). The vectoriza-
tion process is done by introducing the vectorization operator
vec(·) [51]. Let X 2Rn⇥n be an arbitrary matrix with the col-
umn vectors denoted by x1, x2, . . . , xn 2Rn . The vectorization
operator produces a vector x 2Rn2

obtained by stacking col-
umn vectors xi 2Rn of the matrix X on top of each other. By
applying the vectorization operator to Eq. (1), we obtain

vec(W) ⇡

MX

p=1

MX

q=1

a p,q vec(Zp,q ), (5)
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w =

MX

p=1

MX

q=1

a p,q zp,q , (6)

where w = vec(W), w 2Rn2
, and zp,q = vec(Zp,q ),

zp,q 2Rn2
. On the other hand, due to the fact that the pattern

matrices Zp,q are formed on the basis of the Walsh functions, we
have that

z
T
l ,s zp,q =

⇢
n2, l = p ^ s = q
0, l 6= p _ s 6= q . (7)

The property in Eq. (7) comes from the fact that the Walsh
basis functions form a complete orthogonal set of functions.
This property can be used to retrieve the coefficients a p,q .
Namely, from Eqs. (6) and (7), we have

1
n2

z
T
p,q w = a p,q . (8)

The expression in Eq. (8) enables us to construct a projection
matrix that produces the coefficients of the expansion in Eq. (1).
Let the matrices 9i 2RM⇥n2

and 5 2RM2⇥n2
and the vectors

ai 2RM and a 2RM2
be defined by

5 =
1
n2

2

6664

91
92
...

9M

3

7775
, 9i =

2

6664

z
T
1,i

z
T
2,i
...

z
T
M,i

3

7775
, a =

2

6664

a1
a2
...

aM

3

7775
,

ai =

2

6664

a1,i
a2,i

...
aM,i

3

7775
. (9)

The vector a groups all the coefficients of the expansion in
Eq. (1). Then, using this construction, from Eq. (8) we have

a = 5w. (10)

The expression in Eq. (10) shows that, to decompose the
deformation matrix W as a sum of the Walsh pattern matrices,
we just need to vectorize this matrix and multiply the result
with the projection matrix 5. That is, to compute the Walsh
decomposition coefficients a p,q , we need to perform a single
vector-matrix multiplication.

3. CONTROL METHOD

In this section, we present the control method. The basic
idea of the control method is to update both the DM control
actions and the DM influence matrix. To develop the control
method, we use the Walsh basis function expansion presented in
Section 2.

Let WD 2Rn⇥n be a desired mirror shape that we want to
produce, and let wD = vec(WD), wD 2Rn2

. Using Eq. (10), we
compute the desired set of coefficients as follows:

aD = 5wD, (11)

where 5 is the projection matrix introduced in Eq. (9) and aD 2

RM2
is the vector grouping the desired coefficients.

We send control actions to the DM or observe its deformation
response at discrete-time instants, denoted by k 2N0. Let wk 2

Rn2
be the observed mirror deformation in the vectorized form,

that is wk = vec(Wk), where Wk 2Rn⇥n is the observed mirror
deformation matrix at the discrete-time instant k. By using the
projection given in Eq. (10), we have

ak = 5wk, (12)

where ak 2RM2
are the coefficients. We postulate the following

DM model:

ak+1 = Qkgk + dk+1, (13)

where Qk 2RM2⇥r is the influence matrix, and the vector gk 2

Rr is defined by

gk =

h
u�

1,k u�
2,k . . . u�

r ,k

iT
, (14)

and where ui,k , i = 1, 2, . . . , r , is the control input applied
to the i th actuator at the time instant k, r is the number of
DM actuators (in our case r = 140), and � = 1.742 is an esti-
mate of the constant of the exponential dependence between
DM control actions and the observed deformation response.
This estimate is obtained by using the least-squares approach
explained in [35]. For the sequel, we group the control inputs
ui,k in the vector uk 2Rr . The values of the control input ui,k
are in the interval [0, 1], with zero corresponding to no con-
trol action and 1 corresponding to the maximal control action
applied to the actuator i . The vector dk+1 2RM2

, that is not
known a priori, takes into account the measurement noise and
unmodeled mirror behavior that are not captured by the model
Qkgk .

To initialize the control algorithm, we need to obtain an ini-
tial estimate of the influence matrix and we also need to compute
initial values of control inputs. In the sequel, we explain how to
generate these initial values.

A. Initial Estimation of the Influence Matrix and
Control Actions

For a positive integer S � r (S should be larger than the number
of DM actuators), we introduce the following notation for batch
data matrices:

A1:S =
⇥

a1 a2 . . . aS
⇤
, G0:S�1 =

⇥
g0 g1 . . . gS�1

⇤
,
(15)

where A1:S 2RM2⇥S and G0:S�1 2Rr ⇥S . To compute the ini-
tial values, we will assume that the influence matrix is constant.
Under this assumption, from Eq. (13), we obtain

ak+1 = Q(0)
gk + dk+1, (16)

where Q(0) 2RM2⇥r is the initial value of the influ-
ence matrix Qk , and this equation is valid for time steps
k = 0, 1, 2, . . . , S � 1. We use the approach presented in
[35] to estimate Q(0). First, we generate random input signals
uk , for k = 0, 1, . . . , S � 1. The entries of the input vector
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uk are generated from a normal distribution with the mean of
0.5 and the variance of 0.15. If any of the generated entries is
larger (smaller) than the upper bound 1 (lower bound 0), then
the value of this entry is set to 1 (0). By grouping expressions in
Eq. (16) for k = 0, 1, 2, . . . , S � 1, we obtain a batch matrix
equation. From this equation, we can estimate Q(0) by solving
the following multivariable least-squares problem:

min
Q(0)

��A1:S � Q(0)G0:S�1
��2

F , (17)

where k·kF is the Frobenius norm. The solution is given by

Q̂(0)
= A1:S GT

0:S�1(G0:S�1GT
0:S�1)

�1. (18)

From Eq. (18), we see the justification of the condition S � r .
Namely, the number of data samples S should satisfy the fol-
lowing condition: S � r (r is the number of DM actuators),
to ensure that the matrix G0:S�1GT

0:S�1 in the solution given
by Eq. (18) is invertible (the columns of G0:S�1 are linearly
independent since the control inputs are randomly selected)
and, consequently, that the solution is well-defined. Once the
initial value of the influence matrix is determined, we determine
the initial control actions by using the following strategy.

The goal of the control algorithm is to produce the desired
mirror surface shape, represented by the deformation matrix
WD 2Rn⇥n . We decompose this matrix to obtain the vector
aD 2RM2

consisting of the desired Walsh coefficients. Then, by
substituting Q(0) in Eq. (16) by its estimate given by Eq. (18),
we can find the initial control actions by solving the following
optimization problem:

min
g0

���aD � Q̂(0)
g

(0)
���

2

2
, (19)

subject to : 0  g
(0)

 1, (20)

where the less-than-equal relation operator  is applied
element-wise. Let the solution of this optimization problem
be denoted by ĝ

(0). If we would simply minimize the cost func-
tion given by Eq. (19) with respect to g

(0), then most likely
the computed control actions would violate the lower limit 0
and upper limit 1 on the control actions. Consequently, the
constraint given by Eq. (20) is introduced in order to ensure
that the computed control actions are physically realizable.
We solve the problem given by Eqs. (19) and (20) by using the
MATLAB function lsqlin(). Once the solution of this problem is
determined, we can obtain the entries of the initial control input
vector û

(0) from the entries of ĝ
(0). The estimated influence

matrix Q̂(0) and the vector ĝ
(0) are used to initialize the adaptive

control method developed in the sequel.

B. Control Algorithm Development

In the interest of deriving the control algorithm, we have to
introduce one simplification related to the unknown vector dk .
To develop the control algorithm, we assume that the vector dk
does not depend on the control index k, that is

dk = d = const. (21)

In experiments, this condition might not hold exactly due
to the measurement noise and disturbances. However, this
assumption is necessary in order to keep the derivations as
simple as possible. As our experiments show, the developed
algorithm works well despite the fact that in experiments there
might be deviations from the assumption stated in Eq. (21).
Even without this assumption, it is possible to derive the control
algorithm. However, the mathematical apparatus will become
more complex and will involve expectation operators. Taking
into account this assumption and the general model given by
Eq. (13), we obtain

ak+1 = Qkgk + d. (22)

To develop the control algorithm, we define the control error
"k 2RM2

as follows:

"k := aD � ak . (23)

By shifting the time index in Eq. (23) and by combining the
resulting equation with Eq. (22), we obtain

"k+1 = aD � Qkgk � d. (24)

On the other hand, for the time step k, we have

"k = aD � Qk�1gk�1 � d. (25)

From Eqs. (24) and (25), we have

"k+1 � "k = Qk�1gk�1 � Qkgk, (26)

"k+1 = "k + Qk�1gk�1 � Qkgk, (27)

"k+1 = �k � Qkgk, (28)

�k = "k + Qk�1gk�1. (29)

At the discrete-time instant k, we can observe the mirror
surface deformation and construct the vector ak . This means
that, at the time instant k, the vector "k given by Eq. (23) can
be constructed. Let us assume that, at the time instants k � 1
and k, we have computed the estimates of Qk�1 and Qk , which
are denoted by Q̂k�1 and Q̂k , respectively. The procedure for
estimating these influence matrices will be explained later in the
text. Also, let us assume that, at the time instant k � 1, we have
computed the vector gk�1 (the vector that is a function of the
control actions). Let the computed value of gk�1 be denoted by
ĝk�1. Then, by substituting Qk�1, Qk , and gk�1, by Q̂k�1, Q̂k ,
and ĝk�1 in Eqs. (28) and (29), we define

"̄k+1 = �̂k � Q̂kgk, (30)

�̂k = "k + Q̂k�1ĝk�1. (31)

Our goal is to compute the control actions for the next time
step k + 1. That is, our goal is to compute the vector gk . First, we
introduce the cost function

"̄T
k+1"̄k+1 = (�̂k � Q̂kgk)

T(�̂k � Q̂kgk). (32)
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We compute the control inputs by solving the following con-
strained optimization problem:

min
gk

(�̂k � Q̂kgk)
T(�̂k � Q̂kgk), (33)

subject to 0  gk  1. (34)

We solve this problem by using the MATLAB function lsqlin(
). The solution of this optimization problem is denoted by ĝk .

C. Dual-Update Control Algorithm

To formulate and solve the optimization problem in Eqs. (33)
and (34), we need to compute the estimates of the influence
matrices Q̂k�1 and Q̂k . The vector ĝk�1 is computed by shifting
the time index to k � 1 in Eqs. (33) and (34). We use a recursive
identification approach [52] to compute Q̂k�1 and Q̂k . To
define the recursive identification approach, we need to define
the following quantities. By applying the vec(·) operator to
Eq. (22), we obtain

ak+1 = Gkqk + d, (35)

Gk = g
T
k ⌦ I , (36)

qk = vec(Qk), (37)

where qk 2Rr M2
is the vector that parametrizes the influ-

ence matrix, Gk 2RM2⇥r M2
, and we have used the following

property of the vec(·) operator [46]: vec(X 1 X 2 X 3) =

(X T
3 ⌦ X 1)vec(X 2), for arbitrary matrices X 1, X 2 and X 3.

We also define the following quantities related to Gk and qk :

Ĝk = ĝ
T
k ⌦ I , (38)

q̂k = vec(Q̂k). (39)

In the sequel, we formulate the dual-update control
algorithm. This algorithm is initialized for k = 1 with
q̂0 = vec(Q̂(0)), where Q̂(0) is defined in Eq. (18), and with
ĝ0 = ĝ

(0), where ĝ
(0) is the solution of the optimization problem

defined in Eqs. (19) and (20). To implement the algorithm,
we also need an additional matrix Pk 2Rr M2⇥r M2

, which is
updated during the control iterations. The initial value of this
matrix, for k = 0, is P0 = � I , where � is a parameter selected
by the user. The dual-update control algorithm consists of the
following steps that are performed for k = 1, 2, 3, . . .

Step 1. Observe the mirror surface deformation and com-
pute the vector ak (Walsh coefficients) by using Eq. (12). On
the basis of the computed value ĝk�1, from the previous step
k � 1, form the matrix Ĝk�1 by using Eq. (38). The following
values are available from the previous time step k � 1: Pk�1 and
q̂k�1. Update the matrix Pk and the vector of influence matrix
parameters q̂k by performing the following steps:

Sk�1 = (�I + Ĝk�1 Pk�1ĜT
k�1)

�1, (40)

Lk = Pk�1ĜT
k�1Sk�1, (41)

Pk =
1
�

Pk�1 �
1
�

Lk Ĝk�1 Pk�1, (42)

ek = ak � Ĝk�1q̂k�1, (43)

q̂k = q̂k�1 + Lkek, (44)

where 0 < �  1 is a user selected parameter, ek 2RM2
, Sk�1 2

RM2⇥M2
, and Lk 2Rr M2⇥M2

is the gain matrix.
Step 2. Form the influence matrix estimates Q̂k�1 and Q̂k by

using the computed values q̂k�1 and q̂k , respectively, by invert-
ing the vectorization operator. Compute "k given by Eq. (23)
and �̂k given by Eq. (31). Form and solve the optimization
problem defined in Eqs. (33) and (34), by using the MATLAB
function lsqlin( ). The solution is given by ĝk . Using this value,
compute the control actions ûk . Apply the control actions to the
DM, wait for the time step k + 1, and go to Step 1, where now
the time index is shifted to k + 1.

Several comments about the developed algorithm are in
order. The vector ek defined in Eq. (43) is called the model
error. This vector quantifies the difference between the
observed modal response ak and the model prediction, given
by Ĝk�1q̂k�1. Following the guidelines given in ([52], p. 379)
and ([31], p. 68), we use � = 0.98. However, selecting � offers
other possibilities [31,53]. The matrix Pk is initialized with the
parameter � = 0.05, that is, P0 = 0.05I . Here, we have used a
scaled identity matrix (sparse matrix) to initialize Pk , in order
to minimize the computational burden. This is necessary since
the matrices in Eqs. (40)–(44) are large dimensional. Namely,
initialization of Pk as a dense matrix will significantly increase
the computational burden. The issue of decreasing the compu-
tational complexity of the proposed control algorithm is a future
research topic.

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results.
We test the developed approach by using a Boston

Micromachines MEMS DM with r = 140 actuators. The
actuation grid is 12 by 12 with 4 corner actuators that are not
active. The DM stroke is about 2 [µm]; the pitch is 400 [µm].
The behavior of this DM type has been analyzed in a num-
ber of manuscripts, see, for example, [54,55] and follow-up
works. Consequently, due to paper brevity, we do not further
summarize other mirror properties.

The produced mirror surface shape is sensed by a partitioned
aperture wavefront (PAW) sensor [56–58]. This sensor has a
large dynamic range, it is relatively fast, and it operates with
uncollimated light sources. It has a relatively high resolution
that is only limited by the used camera. In addition, this sen-
sor is speckle-free, robust, and polarization-independent.
Further details related to this sensor can be found in [57,58].
The used experimental setup is the same as the experimental
setup used to generate the results in our previous publication
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[28]. Consequently, in the interest of brevity, we only describe
its main components. The light source is an LED (660 [nm],
Thorlabs). A system of optical components is used to direct and
shape the beam and illuminate the DM surface. A monochrome
camera (Blackfly BFS-U3-123S6M-C) is used as a PAW sensing
element. The maximal size of the observed image (deformation
matrix) is 1001 by 999. The DM and sensor are controlled by
using the MATLAB programming anguage.

As explained in Section 2, to decompose the observed defor-
mation as a sum of Walsh pattern matrices, the deformation
matrix size should be expressed as a power of 2. On the other
hand, the camera of the PAW sensor produces a deformation
image size of 1001 by 999 pixels. This image covers an area that
is larger than the active DM area. Taking all these things into
consideration, we have at least two options for selecting the
deformation matrix size. The first option is a 256 by 256 matrix,
and the second option is a 512 by 512 matrix. The second
option covers the centers of all the actuators (including 4 corner
inactive actuators). However, in the second option, a part of
deformation caused by the edge actuators will not take part in
the defined 512 by 512 deformation matrix. We investigate the
performance of the developed method for both options.

A. Results for the 256 by 256 Deformation Matrix

First, we present the control results for the deformation matrix
represented by a 256 by 256 image (256 by 256 deformation
matrix). This corresponds to n= 256 = 28, that is, to V = 8 (for
more details, see Section 2). We generate a “raw” desired mirror
surface shape as

W raw
D = a1,1 Z1,1 + a2,2 Z2,2 + a3,3 Z3,3, (45)

with the coefficients of the expansion equal to a1,1 = �1,
a2,2 = �0.1, and a3,3 = 0.2. The raw desired surface shape
is shown in Fig. 2(a). This desired surface contains vertical
(90 degrees) surface changes between the segments of the regular
checkerboard pattern shown in Fig. 2(a). On the other hand, the
deformation response of a single actuator is a smooth function
resembling the Gaussian function. Consequently, the mirror
actuators are not able to produce vertical 90-degree deformation
changes from one segment to another. Due to this, we need to
apply a smoothing low-pass 2D filter to the desired raw surface
shape. We choose a Gaussian 2D filter, as shown in Fig. 2(b).
The standard deviation of the filter is 30. After applying the
Gaussian 2D filter, we offset the resulting deformation by �1
(from every entry of the matrix we subtract �1). This proc-
ess produces the desired surface shape shown in Fig. 2(c). We
compute the decomposition given by the Eq. (1) for M = 80.
This produces a total of 6400 coefficients, which are shown in
Fig. 2(d). These are the desired coefficients we want to produce.

Next, we compute the control actions by using the developed
approach. Figure 3 shows the control results. Panels (a) and (b)
in Fig. 3 show the desired and best-produced shapes, respec-
tively. Panel (c) in Fig. 3 shows the error (difference between the
desired and produced shapes). The root-mean-square (RMS)
surface error is 14 [nm]. Finally, Fig. 3(d) shows the desired and
best-produced coefficients of the 2D Walsh basis expansion
defined in Eq. (1).
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Fig. 2. (a) “Raw” desired shape defined in Eq. (45). (b) Gaussian
2D low-pass filter applied to the “raw” desired shape. (c) Desired
shape after applying the filter and offset. (d) Coefficients of the decom-
position in Eq. (1) obtained by decomposing the filtered desired
shape.

(a) (b)

(c) (d)

Fig. 3. (a) Desired filtered mirror shape. (b) Best produced mirror
shape. (c) Error. (d) Desired and produced coefficients.

Figure 4 shows the surface cross section generated at two hori-
zontal cut planes. Figure 5 shows the convergence of the control
error "k+1 defined in Eq. (23) and the model error ek+1 defined
in Eq. (43).

The presented results demonstrate the excellent performance
of the developed method. The RMS surface error converges
to 14.1 [nm] in a relatively small number of iterations.
Furthermore, Fig. 4 shows that the method outperforms the
least-squares approach for controlling the DM. In our simula-
tions, the least-squares approach is used to generate the initial
guess. However, this approach is used in a number of articles as a
standalone method to control the DM. That is, the dual-update
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Fig. 4. Surface cross sections at the horizontal cut planes generated
at the pixels (a) 128 and (b) 168. The “least-squares” shape corresponds
to the initial surface shape produced by the initial control actions gen-
erated by solving the optimization problem in Eq. (19) and (20).
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Fig. 5. Convergence of the control method. The graph shows the
two norms of the control error "k+1 and model error ek+1 defined in
Eqs. (23) and (43), respectively.

control method proposed in this article clearly has a significant
advantage over the classical least-squares approaches for DM
control.

B. Results for the 512 by 512 Deformation Matrix

Here, we present the results for the observed deformation matrix
with the dimension of 512 by 512 pixels. In this case n= 2V ,
where V = 9 (for more details, see Section 2). By defining the
deformation matrix in this way, we are able to investigate the
influence of the actuation boundaries on the performance of the
developed algorithm. We test the following raw desired shapes
with spatial frequencies from smaller to larger:

WD1 = �0.3Z1,1 + 0.3Z6,6, (46)

WD2 = �0.3Z1,1 + 0.3Z7,7, (47)

WD3 = �0.3Z1,1 + 0.3Z10,10. (48)

We apply the Gaussian low-pass filter to the desired shapes.
The filter has the support of 70 pixels and deviation of 25. Once
the filter is applied, on offset of �1 is applied to the filtered
shapes to produce the final desired shapes. The final desired
shapes are shown in Panel (a) of Figs. 6, 8, and 10. Panel (b) in
Figs. 6, 8, and 10 shows the best-produced shapes. Panel (c) in

(a) (b)

(c) (d)

Fig. 6. Control results for the raw desired shape defined in Eq. (46)
[note that this shape is filtered and scaled to generate panel (a)].
(a) Filtered and scaled the desired shape. (b) Best produced shape.
(c) Surface error. (d) Surface error for the central mirror part [obtained
by cropping the surface error shown in panel (c) by 90 pixels on all four
image sides].

(a) (b)

Fig. 7. Control results for the raw desired shape defined in Eq. (46)
[note that this shape is filtered and scaled to generate panel (a) in
Fig. 6]. (a) Cross-sections of the produced and desired shapes generated
by horizontal cut planes. The “least-squares” shape corresponds to
the initial surface shape produced by the initial control actions gen-
erated by solving the optimization problem in Eqs. (19) and (20).
(b) Convergence of the model, control, and RMS surface errors of the
developed algorithm. Panel (b) shows the 2-norms of the control error
"k+1 and model error ek+1 defined in Eqs. (23) and (43), respectively.

Figs. 6, 8, and 10 shows the surface errors. Panel (d) in Figs. 6,
8, and 10 shows the surface errors over the central mirror part
(obtained by cropping the surface error by 90 pixels on all four
image sides).

Panel (a) in Figs. 7, 9, and 11 shows the cross-sections of
the desired and produced shapes generated by horizontal cut
planes. Panels (b) in Figs. 7, 9, and 11 show the convergence of
control, model, and RMS surface errors. The above-presented
results demonstrate the excellent performance of the developed
method. From Panel (b) in Figs. 7, 9, and 11, we can observe
that the RMS surface error converges to approximately 40 [nm]
in a relatively small number of iterations. These results can addi-
tionally be improved by tuning the parameters (parameter � and
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(a) (b)

(c) (d)

Fig. 8. Control result for the raw desired shape defined in Eq. (47)
[note that this shape is filtered and scaled to generate panel (a)].
Captions of panels in this figure correspond to the captions of panels in
Fig. 6.
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Fig. 9. Control result for the raw desired shape defined in Eq. (47)
[note that this shape is filtered and scaled to generate panel (a) in
Fig. 8]. Captions of panels in this figure correspond to the captions of
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Fig. 10. Control result for the raw desired shape defined in Eq. (48)
[note that this shape is filtered and scaled to generate panel (a)].
Captions of panels in this figure correspond to the captions of panels in
Fig. 6.
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Fig. 11. Control result for the raw desired shape defined in Eq. (48)
[note that this shape is filtered and scaled to generate panel (a) in
Fig. 10]. Captions of panels in this figure correspond to the captions of
panels in Fig. 7.

the matrix P ) of the algorithm. The development of methods
for optimal tuning of the dual-update algorithm is a future
research topic. Furthermore, by comparing the least-squares
shapes with the best produced shapes in Panel (a) of the same
figures, we can observe that our method has significant advan-
tages over the state-of-the-art least-squares approaches for DM
control.

C. Generation of a Zernike Desired Shape

Here, we demonstrate the performance of the developed
algorithm for generating the desired shape equal to a Zernike
coefficient. We select the desired shape to be equal to an off-
set and scaled version of Z0

6. The desired shape is shown in
Fig. 12(a). We use the following parameters: � = 0.98 and
P = 0.05 · I . The PV value of the desired shape is 1.7 [µm].

Figures 12 and 13 demonstrate good performance of the
developed method. We can observe a central surface RMS error
of 21.6 [nm].

(a) (b)

(c) (d)

Fig. 12. Control result for the desired shape equal to an offset
and scaled version of Z0

6 . (a) Desired shape. (b) Best produced shape.
(c) Surface error. (d) Surface error of the central mirror part (obtained
by cropping the surface error shown in panel (c) by 90 pixels on all four
image sides).
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(a) (b)

Fig. 13. Control results for the desired shape equal to an offset and
scaled version of Z0

6 . Captions of panels in this figure correspond to the
captions of panels in Fig. 7.

5. CONCLUSION

Here, we have developed a novel approach for adaptive control
of DMs. On the basis of the feedback information provided by
the sensor, our method updates the DM influence matrix and
the control actions. We have tested the developed algorithm by
using a Boston Micromachines DM with 140 actuators. We
are able to generate RMS surface errors in the interval of 14–40
[nm]. These experimental results can be further improved by
tuning the algorithm parameters. Besides introducing a novel
control algorithm, we have also demonstrated the potential
of using Walsh basis functions for DM control. Walsh basis
functions can also be used as an effective method for the control
of segmented DMs. Our approach can straightforwardly be
applied to other DM types. In future work, we will focus on
improving the performance of the developed approach by opti-
mally tuning the control algorithm parameters and on reducing
the computational complexity of the developed approach.
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