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Abstract: We develop a simple and effective control method for accurate control of deformable
mirrors (DMs). For a desired DM surface profile and using batches of observed surface profile
data, the proposed method adaptively determines both a DM model (influence matrix) and control
actions that produce the desired surface profile with good accuracy. In the first iteration, the
developed method estimates a DM influence matrix by solving a multivariable least-squares
problem. This matrix is then used to compute the control actions by solving a constrained
least-squares problem. Then, the computed actions are randomly perturbed and applied to the
DM to generate a new batch of surface profile data. The new data batch is used to estimate a new
influence matrix that is then used to re-compute control actions. This procedure is repeated until
convergence is achieved. The method is experimentally tested on a Boston Micromachines DM
with 140 micro-electronic-mechanical-system actuators. Our experimental results show that the
developed control approach can achieve accurate correction despite significant DM nonlinearities.
Using only a few control iterations, the developed method is able to produce a surface profile
root-mean-square error that varies from 5− 30 [nm] for most of the tested Zernike wave-front
modes without using direct feedback control. These results can additionally be improved by
using larger data batches and more iterations or by combining the developed approach with
feedback control. Finally, as we experimentally demonstrate, the developed method can be used
to estimate a DM model that can effectively be used for a single-step open-loop DM control.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Deformable mirrors (DMs) are used in Adaptive Optics (AO) systems to correct for wave-
front aberrations as well as to produce different wave-front shapes [1–3]. A DM usually
consists of a reflective optical surface that is mechanically deformed using different types of
mechanisms and actuators. Widely used actuation technologies and mechanisms are based on
electrostatic, piezoelectric, Micro-Electronic-Mechanical-Systems (MEMS), thermo-mechanical,
and voice-coil systems and physical phenomena [1,3–19].

In this paper, we present a novel DM control method and we experimentally verify it on a
MEMS DM with 140 actuators that is developed by Boston Micromachines [20,21]. MEMS DMs
are relatively low-cost, have a fast response, and allow for a relatively large number of actuators
within the DM active surface. One of the main characteristics of the used MEMS DM, as well as
of DMs that are based on other actuation technologies and mechanisms, is that for a sufficiently
large actuator operating range, the deformation response is a nonlinear function of the applied
control signals. Intrinsic nonlinearities and nonlinear couplings between neighboring actuators
become severe for large magnitudes and large variations of control signals that are necessary
to produce certain wave-front shapes. If these nonlinearities are not properly modeled and if
nonlinear effects are not properly addressed by control algorithms, then the overall wave-front
correction performance can significantly be degraded.
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Generally speaking, we can distinguish between closed-loop and open-loop approaches for
DM control. Closed-loop approaches use DM-influenced measurements of system performance,
such as wave-front observations or image quality measures, as feedback to the controller to
facilitate iterative convergence to the desired control objective or wave-front shape. Open-loop
approaches attempt to produce a desired wave-front shape in a single step without feedback
or iteration. The performance of open-loop approaches can significantly be degraded in the
presence of model uncertainties and external disturbances affecting the DM dynamics. On the
other hand, closed-loop approaches can work relatively well even in the presence of the DM
model uncertainties and disturbances, however, at the expense of larger numbers of wave-front
observations and control iterations. In both approaches, improved model fidelity between control
inputs and desired shapes will result in improved controller performance. These facts motivate
us to work on the development of control approaches that are based on accurate DM models
estimated from the observed wave-front data.

There are a large number of articles addressing control of DMs and related wave-front
estimation problems. A comprehensive survey of all DM control approaches goes well beyond
the length limits and the scope of this article. Consequently, we mention only the most relevant
or recent approaches. In [22], multivariate adaptive regression splines are used to develop an
open-loop approach for DM control. In [23,24], a least-squares method is used to estimate
parameters of a discretized Partial Differential Equation (PDE) model of a DM. On the basis of
such a model, in [24] an open-loop DM control approach is developed. In [25], a second-order
DM model is used to develop a closed-loop control method. In [26], a modified iterative learning
control method [27,28] is used to adjust DM control actions during closed-loop operation. The
approach presented in [26] explicitly penalizes control actions, and consequently, it can be used
to prevent actuator saturation. In [20], an open-loop DM control approach is developed that
uses a first-principle PDE model to calculate DM control actions. Further refinements and
developments of the open-loop control approach are presented in [29].

The above-summarized approaches can also be classified on the basis of how they take into
account DM nonlinearities. The approach presented in [22] uses nonparametric estimation
procedures and statistical analysis to estimate a DM model that can capture nonlinear system
behavior. However, this approach requires a large number of wave-front samples in order to
accurately fit the DM model. In [23,24], linear DM and actuator coupling models are assumed. In
[26], a DM model is linearized around a working point. When used in a feedback control setting,
the approaches presented in [23,24,26] can partially compensate for unmodelled nonlinearities.
However, in the open-loop control framework, such approaches might produce sub-optimal control
performance. In [20] and in the follow-up article [29], some of the DM model nonlinearities are
taken into account by using a nonlinear PDE model of plate deformation [30].

A widely used DM control paradigm is to assume a constant DM model, without updating it on
the basis of wave-front data collected during control iterations. For example, in a feedback control
setting, used in [23,24,26], only control actions are being updated, and the DM model is kept
constant. On the other hand, adaptive control techniques developed by control engineers [31],
aim at adaptively updating both control actions and system models on the basis of the collected
data. This control paradigm can effectively deal with model uncertainties and nonlinearities.
However, despite several benefits of adaptive control approaches, to the best of the authors’
knowledge, the potential of these approaches for DM control is not thoroughly investigated.
There are only several approaches available in the literature that to some extent use and exploit
the adaptive control idea. Thus, in [32] a DM influence function is iteratively calibrated during
the closed-loop correction process. In [33], an approach based on a recursive least-squares
method [34] is used to adaptively estimate a DM model. However, the approaches presented in
[32,33] do not account for actuator saturation, which can significantly degrade the correction
performance. Furthermore, since the approach developed in [33] works in closed-loop, control
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signals might become correlated with measurement noise and disturbances, and consistency of
the adaptive estimation algorithm might not be guaranteed [35]. In addition, closed-loop data
might be non-informative or the persistency of excitation condition might not be guaranteed
[34]. If not properly addressed, these phenomena can significantly limit the DM correction
performance.

In this paper, we develop a simple and easy-to-implement adaptive control approach for
accurate DM control. For a desired DM surface profile (shape) and using batches of observed
surface profile data, the proposed method adaptively determines both a DM model (influence
matrix) and control actions that produce the desired surface profile with good accuracy. In the
first iteration, the developed method estimates a DM influence matrix by solving a multivariable
least-squares problem. This matrix is then used to compute the control actions by solving a
constrained least-squares problem. Then, the computed actions are randomly perturbed and
applied to the DM to generate a new batch of surface profile data. The new data batch is used to
estimate a new influence matrix that is then used to re-compute control actions. This procedure
is repeated until convergence is achieved. In our experimental setup, the DM deformation is
observed using a partitioned aperture wavefront sensor [36–38]. Our experimental results show
that the developed control approach can achieve accurate correction despite significant DM
nonlinearities. Using only a few control iterations, the developed method is able to produce
a surface profile root-mean-square error that varies from 5 − 30 [nm] for most of the tested
Zernike wave-front modes without using direct feedback control. These results can additionally
be improved by using larger data batches and more iterations or by combining the developed
approach with feedback control. Finally, as we experimentally demonstrate, the developed method
can be used to estimate a DM model that can effectively be used for a single-step open-loop DM
control.

We briefly summarize the main contributions of the developed approach. Since the DM model
is not estimated using closed-loop data, the developed control method does not suffer from issues
related to the possible correlations between inputs and disturbances, and moreover, we ensure that
the persistency of excitation condition is satisfied. This might not be the case for the closed-loop
approach developed in [33]. In contrast to other adaptive DM control approaches, our approach
explicitly takes into account actuator control limits when computing control actions, and thus can
avoid performance loss due to actuators working in the saturation regime. On the other hand,
most of the approaches proposed in the literature assume that the “true” DM model, represented
by the influence matrix, is constant and global. That is, independent from the operating DM
regime. We show that such an assumption can limit the performance of the control algorithms.
On contrary, we relax this assumption by allowing DM influence matrices and control actions to
depend on the desired surface profiles. In this way, we can improve the correction performance
and obtain local models that are valid in certain operating regimes and that can better approximate
the mirror nonlinear behavior. Finally, as we experimentally demonstrate, our approach can serve
as the basis for the development of high-performance open-loop DM controllers. In the present
form, the developed approach is ideal for correcting modest-speed wave-front aberrations, such
as aberrations induced by thermal phenomena [39–47]. The developed methods can easily be
adapted for applications where faster correction is required by implementing the main steps using
recursive least squares techniques or using steepest descent optimization methods.

This manuscript is organized as follows. In Section 2, we briefly describe the used DM and
experimental setup. In this section, we also quantify the DM nonlinearities and estimate an
exponential model that relates control actions and deformations. In Section 3, we present the
control methods. In Section 4 we present the experimental results, and in Section 5, we present
conclusions and future work.
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2. DM nonlinearity analysis and preliminary estimation

In this section, we first briefly describe the used MEMS DM and analyze its nonlinear behavior
and actuator couplings. We also estimate an analytical form of a function relating control actions
and mirror deformations immediately under actuators. We show that an exponential function
model provides a more optimal deformation fit compared to the quadratic function that is often
postulated in the literature. The presented analysis enables us to postulate and estimate a DM
model in the next section, as well as to develop the control algorithm.

Experiments in this paper are performed on a Boston Micromachines MEMS DM. The
actuators are distributed on a 12 by 12 grid. Corner actuators are inactive, so in total, we can
compute control actions for 140 actuators. The DM pitch is 400 [µm] and the stroke is 3.5
[µm]. The DM facesheet thickness is 3 [µm]. The mirror surface profile (shape) is observed
over a circular mirror region (pupil) that partly covers the grid of 10 by 10 actuators (see the
experimental results in Section 4). Some of the controlled actuators are outside of the defined
pupil area. This is a typical practice in DM control. Namely, by locating some of the active
actuators outside of the observed pupil we can improve the quality and fidelity of the shapes
formed within the pupil, and additionally, in this way, we can decrease the negative influence
of the edge effects. The behavior of this mirror was analyzed and characterized in a number
of papers, see for example [20,29] and references therein. Consequently, we will analyze only
nonlinear mirror behavior that is relevant to our work.

We develop a fairly generally applicable method for DM control. The only requirement for the
implementation of the developed control method is that wave-front or surface shape observations
are available in vector or matrix forms. The main ideas and numerical implementation of the
developed method are independent of the used sensor type, camera, and configuration of the
optical system, and consequently, it can easily be used in other optical systems. Consequently, for
brevity and due to space limitations, we only provide a brief description of the optical system used
to test the developed method. The mirror deformation is observed using a Partitioned Aperture
Wave-front (PAW) sensor [36–38]. This sensor type has a relatively large dynamic range. It works
with uncollimated light sources, it has a high resolution that is limited by camera pixels, and
since it performs only a single observation of the surface profile, it is relatively fast. Additional
advantages of the PAW sensor are that it is robust (no mechanical moving parts), speckle-free, and
polarization-independent. A detailed description of the PAW sensor and its working principle are
given in [37,38]. The DM and sensor are integrated in an optical setup with the source provided
by a red LED (660 [nm], Thorlabs) followed by a system of optical components that direct and
shape the beam, and illuminate the mirror surface. The PAW sensor uses a monochrome camera
(Blackfly BFS-U3-123S6M-C). The sensor output is an image (represented by a 1001 by 999
matrix) corresponding to the DM surface deformation.

Our first task is to analyze and quantify actuator coupling nonlinearities. An ideal DM will have
a linear response that is mathematically described in the sequel. Let w(x, y, u1, u2, . . . , u140) ∈ R
be a function describing the deformation of the DM surface. The scalar variables x, y ∈ R are
spatial positions in the mirror plane and u1, u2, . . . , u140 are the DM control inputs. Namely, in
the ideal case of a linear DM, the superposition principle should hold true. The superposition
principle for two actuators is mathematically described as

w(x, y, ui, uj) = w(x, y, ui) + w(x, y, uj),∀x, y, ∀i, j, (1)

where ui and uj are control inputs applied to arbitrary actuators i and j, respectively, w(x, y, ui, uj)

is the deformation when both actuators are active at the same time, w(x, y, ui) is the deformation
when only the actuator i is active, and similarly, w(x, y, uj) is the deformation when only the
actuator j is active. Any deviation from this equation implies that the response is nonlinear.
Consequently, deviations from the Eq. (1) can be used to identify and quantify the coupling
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nonlinearities of two actuators. We define the superposition error as

mi,j(x, y) = w(x, y, ui, uj) − w(x, y, ui) − w(x, y, uj), ∀x, y. (2)

We test the superposition principle for several adjacent actuators. The superposition test for
the actuators i and j consists of the following experiment. First, we apply a control action to
actuator i, while keeping the actuator j inactive, and observe the response. Then we reverse the
order. That is, we apply a control action to actuator j, while keeping the actuator i inactive, and
observe the response. Finally, we apply the control actions to both actuators and we observe
the response. This data enables us to compute the left-hand and right-hand sides of the Eq. (1)
and the superposition error given by (2). Figure 1 shows the results of the superposition test for
several adjacent actuators. Panels (a), (c), and (e) show the mirror deformation in the vicinity of
the actuator 50 (located near the mirror center). Panels (b), (d), and (f) show the mathematically
superimposed response and the observed mirror deformation response.

Fig. 1. Mirror surface deformation induced by actuators for the actuator spacing of (a) 1,
(c) 2, (e) 3. Comparison of the mathematically superimposed and observed deformations for
the two actuators: actuator spacing of (b) 1, (d) 2, and (f) 3. The results are generated for
70% of the maximal magnitude of applied control actions.

The control actions applied to every actuator are 70% of the maximal control-action magnitude.
We can observe that the actuator coupling nonlinearity is significant for the actuator in the
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immediate vicinity of the actuator 50 (spacing equal to 1), and the nonlinearity effect fades away
as the actuator spacing increases. The same phenomenon is observed for other tested actuators.
This implies that the actuator coupling is strongly nonlinear for neighboring actuators and the
coupling becomes more and more linear as the distance between actuators increases.

Next, we investigate the superposition error (2) for two adjacent actuators when the control-
action magnitudes vary from 0% to 100% of the maximal control-action magnitude. The results
are shown in Fig. 2(a). We can observe that the superposition error increases as the control-action
magnitude increases. We can observe that the superposition error is larger than 150 [nm] for 100
% of control-action magnitude. Finally, we experimentally investigate the shapes of functions
relating the mirror deformations immediately under the actuators and applied control inputs. To
collect the data, we vary the control-action magnitudes of every actuator from 0% to 100%, and
we observe the deformations under each of the 140 actuators. The results are shown in Fig. 2(b).
This figure shows the deformations of mirror points that correspond to approximate centers of
140 actuators.

Fig. 2. (a) The error between the actual and superimposed response for the actuator
spacing of 1. Percentages in the figure legend correspond to the percentages of control-input
magnitudes applied to the actuators (with 100 corresponding to the maximal magnitude
value). (b) The absolute value of deformation under actuators as a function of the control
action. This panel also shows fitted quadratic (marked by ”x”) and exponential functions
(marked by the yellow dashed line).

The above-presented superposition and nonlinear analyses imply that the nonlinear effects will
be more dominant for larger magnitudes of control actions. On the other hand, we know that such
magnitudes are required to produce wave-front shapes with larger Peak-to-Valley (P-V) ratios.
Also, nonlinear effects will become more dominant when neighboring actuators have to be excited
at the same time (since this will increase the superposition error). From Fig. 2(b) it follows that the
actual actuator deformation response strays from the paths of the fitted quadratic or exponential
functions for higher values of applied control-input magnitudes. Since the exponential function
will be included in the model presented in the next section, we can expect that model uncertainties
will increase for actuator actions close to the maximal actuation limits.

Next, we present an effective procedure for fitting an exponential function modeling actuator
deformation responses. This function will be integrated into the DM model developed in the
next section. A large number of DM modeling approaches available in the literature assume a
quadratic model describing the actuator deformation response, see for example [23]. However,
our experimental results show that the quadratic model is not the most accurate one (at least
for the DM used in our experiments). Instead, the experimental observations imply that an
exponential function represents a more accurate model. The exponential function approximates
the absolute deformation as follows

wa,i ≈ k1uk2
i , (3)
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where k1 and k2 are constants that we want to estimate, and wa,i is the absolute value of the
deformation of a mirror point located close to the center of the actuator i. We estimate the model
constants using the observed responses of all actuators. We proceed as follows. For a known
value of ui, the dependence of the function wa,i on k1 and k2 is nonlinear. Consequently, it seems
that to estimate these constants we would need to employ a nonlinear squares method. However,
by taking the natural logarithms of both sides of (3), we can transform this function into a form
that enables us to use a linear least-squares method

ln(wa,i) ≈ ln(k1) + k2 ln(ui). (4)

To every actuator i we apply 10 values of the control-input magnitude varying from 10% to
100% of the maximal control-input magnitude with an increment of 10%. We scale-down these
values to 0.1, 0.2, . . . , 1. Let wa,i,j, j = 1, 2, . . . , 10, be the observed deformation for the scaled
applied control-input magnitude of 0.1j. Then, on the basis of (4), we can write

qi ≈ Dx, (5)

qi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ln(wa,i,1)

ln(wa,i,2)

...

ln(wa,i,10)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ln(0.1)

1 ln(0.2)
...

...

1 ln(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, x =

⎡⎢⎢⎢⎢⎣
ln(k1)

k2

⎤⎥⎥⎥⎥⎦ , (6)

where qi ∈ R
10, D ∈ R10×2, and x ∈ R2 is a vector that we want to estimate. For i = 1, 2, . . . , 140,

from (5), we have

q ≈ Rx, q =
[︂
qT

1 qT
2 . . . qT

140

]︂T
, R =

[︂
DT DT . . . DT

]︂T
. (7)

We determine x by solving the following least-squares problem

min
x

∥q − Rx∥2
2 , (8)

where ∥·∥2 is the vector 2-norm. The solution of the least-squares problem is given by

x = (RTR)−1RTq. (9)

Once the solution x is found, we can determine the constants k1 and k2 as follows: k1 = ex1

and k2 = x2, where x1 and x2 are the first and second entries of x. In fact, to postulate the DM
model in the next section, we only need the constant k2, since the constant k1 is absorbed as a
parameter in the model and estimated again. On the basis of our experimental data, we have
obtained: k1 = 2.2473 and k2 = 1.7420. Figure 2(b) shows the results of fitting the exponential
function. Since the quadratic model is often used in the literature to fit the actuator response,
for comparisons, we also show the results of fitting the quadratic function (fitted using a similar
procedure to the one explained above). We can observe that the exponential function more
optimally fits the actuator response compared to the quadratic function. This improved fitting
accuracy will directly improve the DM correction performance. In the next section, we postulate
the DM model that partly eliminates the effect of the exponential nonlinearity of the actuator
deformation response. This enables us to use a linear multivariable least-squares method to
estimate the DM model.
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3. Model formulation and control method

In this section, we first formulate the DM model. Then, on the basis of the formulated model,
we present the adaptive control method that for the desired DM surface profile shape iteratively
updates both the DM model and control inputs. Finally, at the end of the section, we explain how
the developed approach can be used to estimate a DM model that can be used for a single-step
open-loop DM control.

3.1. Motivation, model formulation, and simple adaptive control

Let w(i∆x, j∆y) denote the observed mirror deformation (here, for notation simplicity, we omit
the dependence on control inputs) at the spatial position i∆x, j∆y, where ∆x and ∆y represent
the step sizes in the x and y directions of the masked observation grid (pupil). Next, let w ∈ Rn

be a vector that collects all the observed deformations w(i∆x, j∆y), where n is a total number
of observation points. As experimentally verified in the previous section, the mirror behavior
is nonlinear and for special cases of boundary conditions and applied loads, it is possible to
derive the deformation as a function of applied forces. However, this function involves series of
trigonometric functions [30], and as such, it is not suitable for the development of computationally
efficient control methods. In contrast, our approach is to postulate a simplified model that can be
adaptively estimated using a multivariable least-squares method.

In order to motivate the development of our method, in the sequel, we point out several
drawbacks of a mirror modeling approach widely used in the literature. In the literature, the
following mirror model is widely used

w ≈ Qconstg, g =
[︂
u2

1 u2
2 . . . u2

140

]︂T
, (10)

and where g ∈ R140, Qconst ∈ R
n×140 is a constant influence matrix, and ui, i = 1, 2, . . . , 140 are

control inputs applied to actuators. We assume that the control inputs are scaled down such that
they belong to the interval [0, 1], where 0 represents no control action, and 1 represents 100%
of control action. The matrix Qconst is usually estimated from the wave-front measurements
by formulating a multivariable least-squares problem. For example, in [26] we have used a
multivariable least-squares method to estimate a constant influence matrix using batches of
the input-output data. The main idea of the approach presented in [26] is to generate random
input data and to excite random wave-front shapes (DM surface profiles). However, this and
similar approaches have the following limitations. First of all, our experimental results show that
randomly generated control inputs (for example, generated from a random uniform distribution)
and the observed mirror deformations, produce estimates of Qconst that in most cases result in
significantly sub-optimal wave-front correction performance. The reason is that completely
random data sets result in the influence matrix model that is only valid for a limited DM operating
range that is determined by random fluctuations of the applied control inputs. We can actually say
that completely random inputs might produce data sets that are not sufficiently information-rich
to estimate a global influence function model (unless the shapes that we want to produce are
actually in the operating range determined by random inputs). In fact, due to the nonlinear nature
of the system, the model of the form (10) might not be the most optimal representation of the
global model, or it might be difficult to postulate a global model. For example, in the previous
section, we have seen that coupling nonlinearities become dominant when adjacent actuators
are activated at the same time and when the actuation signals take larger values. Consequently,
global linear models of the form (10) might be significantly suboptimal.

Another limitation of the approaches that rely upon the model (10), is that they assume a
quadratic function of the applied control actions. This assumption might be valid for certain
mirror types, however, it is more scientifically and practically justified to directly estimate the
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function form from the experimental observations. For example, our results, shown in Fig. 2(b)
demonstrate that a more appropriate model is the exponential model.

To overcome these difficulties, we postulate a different mirror model. Let wd ∈ Rn be the
desired surface shape (surface profile) that we want to produce. We assume that around every
desired shape that we want to produce, exists a model of the following form

wd ≈ Q̂ẑ, ẑ =
[︂
ûk2

1 ûk2
2 . . . ûk2

140

]︂T
, (11)

where Q̂ ∈ Rn×140 is the influence matrix that to some extent depends on the shape we want to
produce, ẑ ∈ R140 is a vector consisting of exponents of optimal inputs ûi, i = 1, 2, . . . , 140, that
produce the desired shape, and k2 = 1.7420 is the constant estimated in the previous section. It
should be kept in mind that this constant value is valid only for the DM used in our experimental
study and if other DMs are used, this constant needs to be re-estimated. It should be emphasized
that we do not explicitly assume that the influence matrix Q̂ is constant. We allow this matrix to
depend to some degree on the desired shape that we want to produce. When the control inputs
are not optimal for a certain shape they are simply denoted by ui, and the corresponding vector z
is defined in the same spirit to (11)

z =
[︂
uk2

1 uk2
2 . . . uk2

140

]︂T
, (12)

A few comments are in order. By defining the vector z (and its optimal equivalent) that
consists of the terms uk2

i , we are able to some degree to eliminate the input nonlinearities shown
in Fig. 2(b). That is, if the influence matrix Q̂ is known, then the model is linear with respect to
the vector ẑ. However, the overall model (11) is not linear since both the influence matrix and the
vector ẑ are parameters that need to be determined for the desired surface shape. Next, if we
would know the influence matrix Q̂, then we would be able to invert the model (11) to estimate
the vector ẑ, and consequently, to estimate the control inputs û1, û2, . . . , û140 that produce the
desired shape. However, the difficulty is that we do not know this matrix a priori. Our idea is to
adaptively estimate the most appropriate form of Q̂ and ẑ that will produce the desired shape.
Before we provide the details of the proposed method, we introduce the following notation. Let
the vector us ∈ R

140 be an arbitrary control input vector applied to the DM at the discrete-time
instant s, and let the vector zs ∈ R

140 be constructed from the entries of us. That is, these vectors
are defined by

us =
[︂
u1,s u2,s . . . u140,s

]︂T
, zs =

[︂
z1,s z2,s . . . z140,s

]︂T
, (13)

where ui,s is the control input applied to the actuator i at the discrete-time instant s. We have that
ui,s = z1/k2

i,s . Let ws ∈ R
n be a vector of mirror deformations produced by the control vector us at

the discrete-time instant s. Next, for s = 1, 2, . . . , p, we define matrices of batch data

Up =
[︂
u1 u2 . . . up

]︂
, Zp =

[︂
z1 z2 . . . zp

]︂
, Wp =

[︂
w1 w2 . . . wp

]︂
, (14)

where Up ∈ R140×p, Zp ∈ R140×p, Wp ∈ Rn×p, and p is the number of collected data samples.
For a chosen desired shape wd, we first perform the following preliminary estimation and

control steps. First, we choose the number of data samples p. The minimum number of data
samples is 140, in order to ensure the invertibility of matrices that are defined in the sequel.
At every time sample s, we select the entries of the vector us, s = 1, 2, . . . , p from the uniform
distribution on the interval [0, 1] (note here that this selection is only used in the preliminary
step). This selection ensures that the applied control actions are within the actuation limits,
otherwise, the actuators will saturate and this will introduce significant control and estimation
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errors. Also, as explained later, this selection ensures that data matrices are invertible. Then, we
apply the control inputs, collect the data, and we form the matrices Zp and Wp. Then, we estimate
a preliminary influence matrix Q(0), by solving the following multivariable least-squares problem

min
Q(0)

∥︁∥︁∥︁Wp − Q(0)Zp

∥︁∥︁∥︁2

F
, (15)

where ∥·∥F is the Frobenius norm and the superscript “(0)” in the notation Q(0) denotes the fact
that this is a preliminary estimation step. The solution is given by

Q̂(0) = WpZT
p
(︁
ZpZT

p
)︁−1. (16)

The fact that the control inputs are random ensures that the matrix ZpZT
p is invertible, and

consequently, the solution Q̂(0) is well-defined. Then, we compute the preliminary control actions
u(0) by solving the following optimization problem

min
z(0)

∥︁∥︁∥︁wd − Q̂(0)z(0)
∥︁∥︁∥︁2

2
, (17)

subject to: 0 ≤ z(0) ≤ 1, (18)

where the relation symbol ≤ is applied element-wise, and 0 ∈ R140 and 1 ∈ R140 are vectors
of zeros and ones, respectively. The constraint (18) ensures that the computed control actions
are within the actuator physical limits. We solve the problem (17)–(18) using the interior-point
method implemented in the MATLAB function lsqlin(·). Let the solution of (17)–(18) be denoted
by ẑ(0). Then, the control inputs for the preliminary iteration are computed by

û(0)i =
(︁
ẑ(0)i

)︁1/k2 , i = 1, 2, . . . , 140, (19)

where ẑ(0)i is the ith entry of ẑ(0). On the basis of computed û(0)i we form the control input vector
û(0). This control vector is then used to initialize the steps 1 and 2 that are described below.
These steps are iteratively performed for l = 1, 2, 3, . . ., until convergence or until satisfactory
control accuracy is achieved.

1. Step 1: Estimate a new influence matrix for a perturbed set of control voltages. Let
û(l−1) be a control input vector computed in the previous iteration l − 1. For s = 1, 2, . . . , h
(h ≥ 140, where h is a user selected parameter), compute a new set of control actions for
estimating the influence matrix as

ũ(l)
s = û(l−1) + ε(l)α(l)

s , s = 1, 2, . . . , h, (20)

where α(l)
s ∈ R140 is a random vector whose entries are sampled from the standard normal

distribution for every s, and ε(l) is a sufficiently small number that is gradually decreased for
increasing l (for example the starting value for l = 1 can be 0.01 or smaller, for additional
recommendations see the comments given at the end of this section). In order to ensure
that the entries of the vector ũ(l)

s do not exceed the saturation limits, we need to constrain
them to the interval [0, 1]. Thus, if an entry of the vector ũ(l)

s is larger than 1, we set that
entry to 1. Similarly, if the entry is smaller than 0, set that entry to 0. After constructing the
set of inputs (20), we apply them to the DM, and we observe the corresponding response
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w̃(l)
s . Then, we can construct new batch matrices for s = 1, 2, . . . , h, as follows

Z̃(l)
h =

[︂
z̃(l)1 z̃(l)2 . . . z̃(l)h

]︂
, W̃ (l)

h =
[︂
w̃(l)

1 w̃(l)
2 . . . w̃(l)

h

]︂
, (21)

where the entries of z̃(l)i , i = 1, 2, . . . , h, are computed by raising the entries of ũ(l)
s to the

power of k2. Next, we compute a new influence matrix by solving

min
Q(l)

∥︁∥︁∥︁W̃ (l)
h − Q(l)Z̃(l)

h

∥︁∥︁∥︁2

F
, (22)

The solution is given by:

Q̂(l) = W̃ (l)
h
(︁
Z̃(l)

h
)︁T (︂Z̃(l)

h
(︁
Z̃(l)

h
)︁T )︂−1

. (23)

The fact that the control inputs are randomly selected in (20) ensures that the matrix in the
above expression is invertible and that the solution exists.

2. Step 2: Compute control actions. On the basis of Q̂(l), form the following constrained
least-squares problem, and compute the control actions û(l)

min
z(l)

∥︁∥︁∥︁wd − Q̂(l)z(l)
∥︁∥︁∥︁2

2
, (24)

subject to: 0 ≤ z(l) ≤ 1. (25)

Then similarly to (19), compute the control actions û(l)i from the entries of the vector ẑ(l)
that solves (24)–(25). Apply the computed control inputs and compute the surface profile
error. If the results are not satisfactory or if the convergence is not achieved, return to step
1.

A few comments and recommendations for parameter selection of the proposed method are
in order. First of all, the number of data samples for preliminary estimation and for forming
the batch matrices, that is, the numbers p and h, should be larger or equal to the number of
actuators, that is in our case 140. This is a necessary condition to ensure the invertibility of the
corresponding data matrices for the estimation of the influence function. Then, the parameter ε(l)
in (20) should be a relatively small number to ensure that the computed control actions do not
exceed the saturation limits. Also, this number should gradually be decreased as the iteration l
progresses, since the control actions will gradually converge, and we do not want them to be
significantly perturbed such that the convergence is violated and the correction performance is
decreased. We vary this parameter from 0.01 in initial iterations to 0.0001 in final iterations,
with a proper increment. This parameter is a tuning parameter of the control approach. Our
experimental results (see Section 4) show that the convergence is achieved after only several
iterations. Here it should be emphasized that the initial estimation step, given by the Eq. (16), is
practically independent of the desired wave-front shape. That is, to save data collection time, this
step can be performed only once, and the preliminary estimates of the control actions should be
then used as a seed for any desired wave-front shape.

Lastly, the above-presented approach is based on batches of input and wave-front data. However,
the approach can be generalized such that only a single wave-front measurement and a single
control input are used in every iteration l to update both the influence function and control actions.
The main idea is to use either a recursive least squares algorithm or a steepest descent method
to iteratively solve a least-squares problem similar to the problem given in (22). Then after
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every iteration, we can use the estimate of the influence matrix to solve (24) and to compute the
control actions. However, special care should be taken to ensure the convergence of this approach.
Finally, the influence function and control actions computed by the developed approach can be
used to initialize a feedback control method to additionally improve the wave-front correction
performance. Experimental verification of these ideas is a future research topic.

3.2. Open-loop control

Here, we explain how the developed approach can be used to generate open-loop control
inputs. Namely, the basic idea is to use the above-presented approach to compute control inputs
corresponding to mirror surface shapes belonging to a certain basis. For example, we can
compute control actions that produce a set of Zernike basis shapes, or we can use some other 2D
basis functions, such as 2D Walsh basis functions [48,49], depending on the application. We
refer to these control actions as basis control actions. Then, we use these basis control actions to
generate a wave-front data set that is used to estimate a global influence matrix Qol. The basis
control actions produce observed wave-front data sets that contain more useful information and
variability compared to observed wave-front data sets produced by purely random control actions.
Consequently, the data generated by basis control actions will contain more valuable information
for estimating the influence matrix. This estimation can be done in the calibration phase. In the
operating phase (open-loop control phase), for an arbitrary wave-front shape, that is not being
used to generate basis control actions, we can compute open-loop control actions by solving
a problem similar to (24)–(25), in which the matrix Q̂(l) is substituted by the estimated global
matrix Qol.

Let wb,1, wb,2, . . . , wb,v be the selected desired surface basis shapes, and let ûb,1, ûb,2, . . . , ûb,v
be the corresponding basis control actions that approximately produce these desired basis shapes
and that are computed using the developed method. Here, v is the number of desired basis surface
shapes. Then, for every computed basis control action ûb,i, we can generate batch matrices Z̃h,b,i
and W̃h,b,i using the identical procedure to the procedure explained in the step 1 of the developed
approach, see the Eqs. (20) and (21). Then, we can estimate a global influence matrix, by solving
the following optimization problem

min
Qol

∥︁∥︁W̃h,b − QolZ̃h,b
∥︁∥︁2

F ,

W̃h,b =
[︂
W̃h,b,1 W̃h,b,2 . . . W̃h,b,v

]︂
, Z̃h,b =

[︂
Z̃h,b,1 Z̃h,b,2 . . . Z̃h,b,v

]︂
.

(26)

The solution is given by:

Q̂ol = W̃h,bZ̃T
h,b

(︂
Z̃h,bZ̃T

h,b

)︂−1
. (27)

Once we have estimated this global matrix, we have completed the calibration step. Now, let
wd,ol represent an arbitrary desired shape that we want to produce and that is generally accurately
representable using the v wave-front basis shapes used in the calibration step. Then, we can
compute the control actions that produce this desired shape by solving

min
zol

∥︁∥︁wd,ol − Q̂olzol
∥︁∥︁2

2 , (28)

subject to: 0 ≤ zol ≤ 1. (29)
It should be emphasized that in (28)–(29), we are not using wave-front observations to produce
the desired shape. All the model information is encapsulated in the estimated matrix Q̂ol. The
solution computed by this open-loop approach can also be used to initialize feedback control
algorithms.

In the next section, we experimentally demonstrate that the open-loop approach produces
relatively good results.
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4. Experimental tests

Here, we experimentally test the performance of the developed approach. First, we demonstrate
the performance of adaptively estimating selected Zernike basis modes and we investigate the
convergence of the developed method. Then, we experimentally investigate the performance of
the open-loop approach. Finally, we experimentally verify our modeling assumption that the
influence matrix models are inherently localized and dependent on the desired mirror surface
shape. That is, we demonstrate that estimated influence matrices are significantly different for
different desired surface shapes.

4.1. Simple adaptive control

We use p = 500 data samples for the preliminary estimation of the influence matrix, and in steps
1 and 2 of the developed method, we use h = 200 data samples. We vary the parameter ε(l) in
(20) from 0.01 for the initial iterations to 0.0001 for the final iterations. Figures 3–6 show the
control performance for the Zernike modes Z0

2 , Z1
3 , Z3

5 , and Z5
7 . Panels (a) and (b) in these figures

show the desired and produced DM surface shapes, respectively. Panels (c) show the surface
profile errors obtained as a difference between desired and produced DM surface shapes. Other
details, such as P-V ratios and RMS errors are given in the captions of these figures. Panels (d)
show the middle cross-sections of the desired and produced wave-front shapes. We can see that
the correction performance varies from 10.2 to 44.1 [nm] RMS error for the full mirror surface
and from 5.8 to 15.6 [nm] RMS error for the central part of the mirror surface. We can also
observe that the errors are larger at the edges, and they become smaller and more uniform as we
approach the central DM part.

Fig. 3. Control performance for generating Z0
2 . (a) Desired surface shape. (b) Produced

surface shape after 6 iterations. (c) Error. (d) Surface cross-section generated by a middle
intersection plane (visualized as a middle horizontal line passing through the circle center in
panel (c)). The P-V ratio of the desired shape is 1.7 [µm]. The produced RMS errors over
the full mirror surface and over the central part of the mirror surface are 10.2 [nm] and 5.8
[nm], respectively.

Next, we show the convergence of the developed approach. Figure 7 shows the convergence
of the RMS surface error for generating the lower-order Zernike modes Z0

2 , Z1
3 , Z0

4 , and Z2
4 , for
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Fig. 4. Control performance for generating Z1
3 . The captions of panels (a)-(d) correspond

to the captions of panels in Fig. 3. The P-V ratio of the desired shape is 1.2 [µm]. The
produced RMS errors over the full mirror surface and over the central part of the mirror
surface are 13 [nm] and 9.6 [nm], respectively.

Fig. 5. Control performance for generating Z3
5 . The captions of panels (a)-(d) correspond

to the captions of panels in Fig. 3. The P-V ratio of the desired shape is 1.2 [µm]. The
produced RMS errors over the full mirror surface and over the central part of the mirror
surface are 25.3 [nm] and 8.7 [nm], respectively.
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Fig. 6. Control performance for generating Z5
7 . The captions of panels (a)-(d) correspond

to the captions of panels in Fig. 3. The P-V ratio of the desired shape is 1.2 [µm]. The
produced RMS errors over the full mirror surface and over the central part of the mirror
surface are 44.1 [nm] and 15.6 [nm], respectively.

the full (panel (a)) and for the central part (panel (b)) of the mirror surface. On the other hand,
Fig. 8 shows the convergence of the RMS surface error for the higher-order Zernike modes Z3

5 ,
Z5

5 , Z2
6 , and Z5

7 , for the full (panel (a)) and for the central part (panel (b)) of the mirror surface.
We can observe that the control performance slightly deteriorates for the higher-order Zernike
modes. The experimentally observed convergence results confirm that completely random inputs
(such as the ones generated from the uniform distribution) produce DM models that result in
suboptimal correction performance. Namely, the iteration 1 in Figs. 7 and 8 corresponds to the
preliminary iteration in which random control signals from the uniform distribution are used
for estimating the DM influence matrix. We can observe that the RMS error value in iteration

Fig. 7. RMS surface error as a function of the control iteration for (a) the full mirror surface
and the (b) central part of the mirror surface. The results are generated for lower-order
Zernike basis modes.
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1 is much larger than the RMS error values in the subsequent iterations. In the subsequent
iterations, the control inputs and their random perturbations are becoming more optimized, and
consequently, the estimated influence matrices are becoming more optimal for certain desired
shapes. This experimentally confirms our statement that the global models of the form (10)
estimated using completely random control inputs are generally suboptimal.

Fig. 8. RMS surface error as a function of the control iteration for (a) the full mirror surface
and (b) the central part of the mirror surface. The results are generated for higher-order
Zernike basis modes.

4.2. Open-loop control and influence matrix locality

We test the open-loop control approach by generating a desired surface shape that is a linear
combination of the following Zernike basis modes

wd = c20Z0
2 + c22Z2

2 + c31Z1
3 + c33Z3

3 + c40Z0
4 + c42Z2

4 + c44Z4
4 , (30)

Fig. 9. Open-loop control results for the set of coefficients C1 defined in the text. The panel
captions are identical to the captions of the panels in Figs. 3–6. The produced RMS surface
errors over the full mirror surface and over the central part of the mirror surface are 29.7
[nm] and 11.9 [nm], respectively. The P-V ratio of the desired surface shape is 0.9 [µm].



Research Article Vol. 29, No. 21 / 11 Oct 2021 / Optics Express 33757

where Zj
i are the Zernike basis modes and cij are the coefficients. We first use the developed adaptive

control method to compute basis control actions (explained in Section 3.2) that produce the Zernike
basis modes Zj

i in (30). We group the coefficients in the set C = {c20, c22, c31, c33, c40, c42, c44}.
We test the open-loop approach for two sets of coefficients. The first set is deterministic,
and defined by C1 = {0.4,−0.2, 0.1,−0.3,−0.2, 0.2,−0.2}. The elements of the second set
are generated from a scaled standard normal distribution. The second set is defined by
C2 = {−0.0712, 0.2481, 0.4274,−0.0521, 0.0182,−0.3027,−0.0083}. For computing the basis
control actions we use p = 500 and h = 200. The open-loop control results obtained for the sets
of coefficients C1 and C2 are shown in Figs. 9 and 10, respectively. We can observe that the
desired shapes can still be produced with a relatively good accuracy. This fact demonstrates a
good potential of the developed method for open-loop generation of the wave-front shapes.

Fig. 10. Open-loop control results for the set of coefficients C2 defined in the text. The
panel captions are identical to the captions of the panels in Figs. 3–6. The produced RMS
surface errors over the full mirror surface and over the central part of the mirror surface are
15.3 [nm] and 8.1 [nm], respectively. The P-V ratio of the desired shape is 0.8 [µm].

Next, we experimentally demonstrate the fact that the estimated influence functions Q̂ are
dependent on the desired surface shapes. That is, the estimated influence functions are localized
and together with control inputs, they define local models. Figure 11(a) and (b) show the 5000th
row and 5th column, respectively, of the estimated influence matrices for the desired shapes

Fig. 11. Entries of the estimated influence matrices obtained for the desired shapes Z1
3 and

Z4
4 . (a) 5000th and (b) 5th column of the influence matrices.
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Z1
3 and Z4

4 . We can clearly observe that the entries of the estimated influence matrices have
significantly different values. This shows that the estimated influence matrices are significantly
different, implying that the DM models are localized.

5. Conclusions and future work

In this manuscript, we presented a novel data-driven method for model estimation and control of
Deformable Mirrors (DMs). Using batches of control and observed DM surface data, and for the
desired surface shape, the method iteratively estimates both the DM influence matrix and control
actions that produce the desired shape. Our experimental results show that the developed control
approach can achieve accurate correction despite significant DM nonlinearities. Using only a few
control iterations, the developed method is able to produce a mirror surface root-mean-square
error that varies from 5 − 30 [nm] for most of the tested Zernike modes without using direct
feedback control. These results can additionally be improved by using larger data batches and
more iterations or by combining the developed approach with feedback control. Finally, as we
experimentally demonstrate, the developed method can be used to estimate a DM model that can
effectively be used for a single-step open-loop DM control. In future work, we will use recursive
estimation techniques and feedback control to increase the correction speed and performance of
the developed method.
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