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Fast imaging over large volumes can be obtained in a simple
manner with extended-depth-of-field (EDOF) microscopy.
A standard technique of Wiener deconvolution can correct
for the blurring inherent in EDOF images. We compare
Wiener deconvolution with an alternative, parameter-free
technique based on the dual reconstruction of fluorescence
and absorption layers in a sample. This alternative tech-
nique provides significantly enhanced reconstruction
contrast owing to a quadratic positivity constraint that
intrinsically favors sparse solutions. We demonstrate the
advantages of this technique with mouse neuronal images
acquired in vivo. © 2017 Optical Society of America

OCIS codes: (100.1830) Deconvolution; (100.3010) Image

reconstruction techniques; (180.2520) Fluorescence microscopy.
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There has been a recent push to develop microscopes that pro-
vide fast imaging over large fields of view (FOVs). This push
has been largely propelled by the neurobiology community,
with the aim of monitoring the population dynamics of hun-
dreds, if not thousands, of neurons in vivo, spanning areas as
large as a few square millimeters [1]. To perform high-speed
imaging over such large FOVs poses a challenge. For example,
calcium indicators currently have response times on the order of
100 ms [2]. On the other hand, a new generation of voltage
indicators whose response times are on the order of only a
few milliseconds is becoming available [3,4]. To attain such
speeds, microscopes based on point scanning are at a disadvant-
age, and camera-based microscopes seem to be a better option.
However, even with a camera, it is difficult to image over large
volumes (as opposed to areas) at a high speed, since this
typically requires the acquisition of stacks of multiple images.

A partial solution to this problem is to perform quasi-
volumetric, or extended-depth-of-field (EDOF), imaging,
where depth resolution is sacrificed in favor of speed. For

example, EDOF imaging can be obtained from fast focal
sweeps [5–7] within individual camera exposure times, attain-
ing DOF extensions of a few hundreds of microns.

Recently, we demonstrated fast EDOF imaging with a de-
formable mirror (DM) that features a 20 kHz update rate [8].
Our same setup is illustrated in Fig. 1, and is basically a stan-
dard epi-fluorescence microscope equipped with an additional
optical relay between the intermediate image plane and the
camera. This relay provides access to a pupil plane where we
inserted the DM (MultiDM, Boston Micromachines Corp.).
By adjusting the curvature of the DM, positive or negative,
we sweep the focus of the microscope over a range D during
a single camera exposure, thus obtaining EDOF images (see [8]
for details).

Fig. 1. (a) Schematic of EDOF Microscope. (b) x − z section of
standard 3D PSF. (c) x − z section of a 3D EPSF. Logarithmic scale.
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However, EDOF images are peculiar. Because all objects
within a focal sweep are, at one time during the sweep, in focus,
EDOF images may be considered all-in-focus. On the other
hand, by the same argument, they may equally be considered
all-out-of-focus. Sharp structures in EDOF images are thus sys-
tematically surrounded by a blurry haze. More rigorously, a 2D
EDOF image is the convolution, restricted to the observation
plane, of the 3D extended point spread function (EPSF) and
the 3D sample itself. The 3D EPSF can be estimated using the
knowledge of the microscope standard PSF and the focal-sweep
range [9], as illustrated in Fig. 1. We note that the transverse
EPSF is remarkably constant throughout the focal-sweep range,
making it possible to approximate the 3D convolution as a 2D
convolution acting on the fluorescence distribution integrated
over this focal-sweep range. An estimate of this integrated
fluorescence distribution σ can then be obtained by solving
the minimization problem [10]

arg min
σ

kI − σ � EPSFk2; (1)

where I is the experimentally acquired EDOF image, and EPSF
is the representative 2D EPSF. Such a minimization problem
can be solved using either direct Wiener deconvolution [8,9] or
an iterative gradient descent.

We found that while Weiner deconvolution was very effec-
tive when applied to simple samples [8], such as fluorescent
beads in agarose, it was somewhat less effective when applied
to more relevant samples, such as in-vivo fluorescently labeled
neurons in mice brains. A reason for this is that our 2D con-
volution model neglected all fluorescence contributions from
beyond the range of the focal sweep. When imaging in thick
tissue, such contributions clearly should not be neglected as
they produce a significant amount of light at the camera.
The purpose of this Letter is to improve upon our past results
and develop a deconvolution strategy specifically designed for
thick tissue fluorescence imaging. In addition to addressing the
problem of far-out-of-focus diffuse fluorescence, we also make
an important allowance for the presence of absorbing structures
within the sample. We confirm the validity of our strategy with
both simulation and experiment.

A closer examination of the 3D EPSF in the x − z panel de-
picted in Fig. 1 shows that three distinct layers are apparent,
one above, one within, and one below the focal-sweep region.
As noted above, for objects located within the focal-sweep layer,
the 3D EPSF is quasi-constant, justifying the use of a represen-
tative 2D EPSF specifically for this layer. However for objects
outside this layer, the function spreads rapidly, producing a
highly blurred background. It is this blurred background that
was not properly taken into account by our representative 2D
EPSF. In practice, this blurred background arises from fluores-
cent objects located in the bottom layer deep within the sample
and beyond the reach of the focal sweep. (We neglect the top
layer since the focal sweep is assumed to start from the sample
surface.)

The effect of a deep fluorescent layer is two-fold. It produces
not only a highly blurred background, but also a back-light that
trans-illuminates the focal-sweep layer of interest. With such
trans-illumination, we must be careful in how we treat the pres-
ence of absorbing objects. Specifically, absorbing objects within
the focal-sweep layer no longer appear simply as an absence of
fluorescence, but rather as a presence of negative fluorescence,
in the sense that they remove fluorescence from the back-light.

In the simplest model, because of multiple scattering, the signal
produced by this back-light may be treated as a uniform
constant B over the entire FOV, which we can incorporate into
our minimization algorithm

arg min
σ

kI − B − σ � EPSFk2; (2)

where σ here can take on both positive and negative values,
corresponding to fluorescent emitters or absorbers, respectively.
However, the net effect of this modification to Eq. (1) is minor,
since all it does is introduce an offset to the previous minimi-
zation solution. In addition, the interpretation of σ as emitters
or absorbers critically depends on the estimation of B.
(Generally, B is taken equal to max�I� since the fluorescence
in the focal-sweep region is usually much weaker than the back-
ground light.) Another more robust means of sample estima-
tion is desirable. In particular, deconvolution strategies that
make use of positivity constraints and sparsity assumptions
have been shown to provide significantly improved results over
standard Wiener deconvolution [11,12], though they usually
do not account for absorption.

In this Letter, we adapt a strategy previously used for speckle
fluorescence imaging [11] to take into account both fluores-
cence and absorption. The idea is to separate σ into distinct
fluorescence and absorption components, where we make
explicit the constraint that fluorescence must be positive and
absorption must be negative. With this new technique, our
deconvolution strategy becomes a two-component least-squares
minimization problem:

arg min
σfluo ;σabs

kI − B − �σ2fluo − σ2abs� � EPSFk2: (3)

The purpose of squaring the parameters σfluo and σabs is two-
fold. First, it guarantees their positivity [corresponding to a
negativity for absorption owing to the sign inversion in
Eq. (3)]. Secondly, our iterative minimization algorithm pref-
erentially avoids converging to small values of σfluo or σabs be-
cause it is based on a gradient descent. (Gradients of quadratic
parameters become small when the parameters themselves
become small.) In other words, the squaring of the search
parameters effectively leads to a soft thresholding in their
reconstruction, thus helping favor sparse (i.e., more contrasted)
solutions [11]. In all the following examples, the initial
estimates are taken to be a constant throughout the FOV,
and iterative minimization is terminated upon optimized
reconstruction as determined by the eye, which has been shown
to be equivalent to Tikhonov regularization [10].

We first compare the performances of dual fluorescence
absorption (DFA) reconstruction and Wiener deconvolution
using simulated data. We numerically generate an en-face
EDOF image of fluorescent emitters close to an absorbing band
(e.g., mimicking fluorescent neurons close to an absorbing
blood vessel). A constant back-light is also introduced to sim-
ulate far-out-of-focus fluorescence. Since the emitters and
absorbers are in the focal-sweep region, their image is modeled
using the EPSF. To simulate typical experimental conditions,
we corrupted the image with Poisson noise associated with a
maximum of 104 photons per pixel (most of which are
back-light). The raw image and reconstructions are displayed
in Fig. 2. DFA reconstruction manifestly provides more con-
trast than Wiener deconvolution, while still maintaining a
good estimate of the relative strength of the emitters.
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The model used in Eq. (3), nevertheless, remains overly sim-
plistic as the fluorescence back-light B is constant over the
entire FOV. To take into account the possibility of spatial var-
iations in B, we replace our two-layer model with a three-layer
model. In this more realistic model, the top layer is the focal-
sweep layer or interest, the bottom is a layer so deep that the
back-light B produced by it may be safely taken to be a con-
stant. Between these, we introduce an intermediate layer in
which we allow the presence of additional absorbers, of distri-
bution denoted by η2abs. Because these absorbers are situated in a
layer beyond the range of the focal sweep, the PSF associated
with their imaging is quite blurred, so blurred that it can be
approximated by a phenomenological 2D Gaussian, denoted
by GPSF. The width of this Gaussian can be chosen depending
on the sample being imaged, and should be roughly commen-
surate with the range of long-scale variations apparent in
the back-light intensity of the experimentally acquired
EDOF images. In short, the back-light intensity in this
three-layer model is modulated by the blurred intermediate
absorbing structures. To take this modulation into account,
our deconvolution strategy becomes a three-parameter minimi-
zation problem:

argmin
ηabs ;σfluo ;σabs

kI −B�η2abs �GPSF− �σ2fluo −σ2abs��EPSFk2: (4)

Again, the key parameter of interest is generally σ2fluo. The
other parameters are collateral, and may or may not be of in-
terest. Simulation results with this new model are shown in
Fig. 3. Despite the deleterious effects of non-uniform back-
light, both deconvolution strategies are able to reveal fluores-
cence emitters that are difficult to discern otherwise, with DFA
continuing to outperform Wiener deconvolution in terms of
reconstruction contrast.

We now turn to experimental results. Figure 4 demonstrates
the application of Wiener and three-layer DFA deconvolution
to in-vivo mouse brain imaging of GCaMP-labeled cortical
neurons. EDOF microscopy was performed with an air-immer-
sion objective (Olympus 10×, NA � 0.3) and a camera expo-
sure time of 100 ms (PCO Edge). The EDOF range was about
200 μm. The raw image [Fig. 4(a)] shows only a hazy structure
of low contrast, where large blood vessels are visible, while

fluorescent neurons are just barely distinguishable from the
background. Wiener deconvolution provides substantial con-
trast improvement, where the neurons not only become more
discernible, but also the finer capillaries become better delin-
eated. Such contrast improvement is similar to the results re-
ported in Ref. [8], as expected since the Wiener deconvolution
strategy is essentially the same.

Much more significant is the contrast improvement ob-
tained with DFA deconvolution, where the fluorescence and
absorption distributions are separately reconstructed. Perhaps
a better illustration of this contrast improvement comes from
a projection of the image frames in time (Fig. 5). Neuronal

Fig. 2. Simulations of fluorescent emitters that become weaker
from top to bottom. (a) Ground-truth fluorescence, (b) raw image,
(c) Wiener, (d) fluorescence, and (e) absorption reconstructions using
two-layer algorithm of Eq. (2).

Fig. 3. Simulations of fluorescent emitters of the same strengths.
(a) Ground-truth fluorescence, (b) raw image, (c) Wiener, (d) back-
light absorption, (e) fluorescence, and (f ) absorption reconstructions
using three-layer algorithm of Eq. (3).

Fig. 4. Time series of (a) raw image, (b) Wiener, (c) fluorescence,
and (d) absorption reconstructions of GCaMP-labeled neurons in
mouse cortex. (a)–(c) Maximum intensity projections and (d) a mini-
mum intensity projection. FOV ≈250 μm.
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activity is essentially invisible in the raw images, whereas it be-
comes visible with Wiener deconvolution and quite striking
with DFA deconvolution.

Our example of imaging mouse neuronal activity in vivo was
not chosen at random. Indeed, such imaging is of considerable
utility in the neuroscience community, where the identification
of where and when neurons become active provides key infor-
mation about their dynamics. In Fig. 5(d), we provide plots of
the activity of selected cells within the EDOF volume, along
with a baseline for a comparison of noise levels. Again, we
see that neuronal activity only becomes apparent upon decon-
volution, and that this activity is significantly magnified upon
DFA deconvolution. A question remains as to how quantitative
this magnification is. For example, Wiener deconvolution, as
defined by Eqs. (1) or (2), is manifestly linear. DFA deconvo-
lution, on the other hand, does not appear at first glance to
be linear. Nevertheless, a scatter plot derived from Fig. 6
comparing the fluorescence levels obtained with both deconvo-
lution methods reveals that, despite its appearance, DFA
deconvolution seems to preserve a high degree of linearity.

In summary, we have demonstrated that both Wiener and
DFA deconvolution are very helpful in extracting features of
interest from otherwise largely featureless EDOF images.
Both techniques have advantages and disadvantages. The main
advantage of Wiener deconvolution is speed, since it does not
require iterative minimization, but can be obtained directly by
division in Fourier space (e.g., [8,9]). The main advantage of
DFA deconvolution is significantly increased reconstruction
contrast, at the cost, however, of speed, (Our reconstructions
took about 20 s per image running on a standard desktop com-
puter.) Another potential disadvantage is failure to converge to
the proper minimum since the cost function in Eq. (3) is only
locally convex (though we observed no such failure in our tri-
als). The question of which technique to adopt thus depends on
the application. In either case, deconvolution provides clear

benefits to EDOF imaging, which may be useful, for example,
in monitoring neuronal dynamics over large scales.
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Fig. 5. Time series of (a) raw image (black), and (b) Wiener (red)
and (c) DFA reconstructions (blue) from Fig. 4. (d) Plots of the time
courses of selected neuronal signals, normalized to their respective
means. Vertical scale � ΔF∕F .

Fig. 6. Scatter plots and linear regressions of σ2fluo versus I (black o)
and σ2fluo versus σ (red x) based on data in Fig. 5(d). Plots indicate that
DFA reconstruction appears to be linear, with the contrast improved
by a factor of about 3 compared to Wiener deconvolution, and
13 compared to the raw image.
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