2023-2024 TimberStrong Design - Build

CENE 476 – December 8th, 2023

Jenna Hays

Mariah Boler

Mourtice Clitso

1.0 PROJECT PURPOSE AND BACKGROUND

- Design and analyze a timber structure using:
 - Concepts of structural engineering
 - Timber design codes
- Create 2D and 3D models of the structure
- Construct and compete against other teams
 - ASCE Intermountain Southwest Student Symposium, April 2024
 - Logan, Utah Utah State University (USU)
- Client: Mark Lamer

Figure 1: 2022
TimberStrong Structure [1]

2.0 SCOPE – TASK 1: Background Research

Task 1.1: Competition Rules

Scoring and design constraints

Task 1.2: Material Research

- Timber species and grade
- Fasteners

Task 1.3: Design Codes

- National Design Specification (NDS)
- NDS Supplement
- Special Design Provisions for Wind and Seismic (SDPWS)

Task 1.4: MathCAD Training

- Used to design and analyze the structure
- Utilized in other classes

```
HEADER:
    Dimensions
                                      Length of rafter
       L_{Raft} = 49.5 in
       L_{wall} = 59 in
                                      Length of wall
       L_{header} = 15 in
                                      Length of header
       Trib_{WALL} = 14.5 in
                                      Height of wall above window
    Loads
       w_{header} = DL \cdot Trib_{WALL} + w_{stud} = 4.48 \ plf Distributed Load on the header
    Solve For
       V_{Max} = (w_{header} \cdot L_{header}) \div 2 = 2.8 \ lbf

M_{Max} = (w_{header} \cdot L_{header}^{2}) \div 8 = 10.5 \ lbf \cdot in
    Flexure Design
       d = \sqrt{(6 \cdot M_{Max}) \div (f_s \cdot b)} = 0.18 \ in \ [NDS 3.3-2]
       if (d \le 3.5 in, \text{``Good''}, \text{``Bad''}) = \text{``Good''}
    Shear Design
       d = (3 V_{Max}) \div (2 b \cdot f_v) = 0.01 in [NDS 3.4.2]
       if(d \le 3.5 in, "Good", "Bad") = "Good"
```

Figure 2: MathCAD Example [2]

2.0 SCOPE – TASK 2: Preliminary Design and Analysis

Task 2.1: Timber Decision Matrix

- Five possible timber species
- Softwood grades 1-5
- Matrix based on cost, availability, and strength

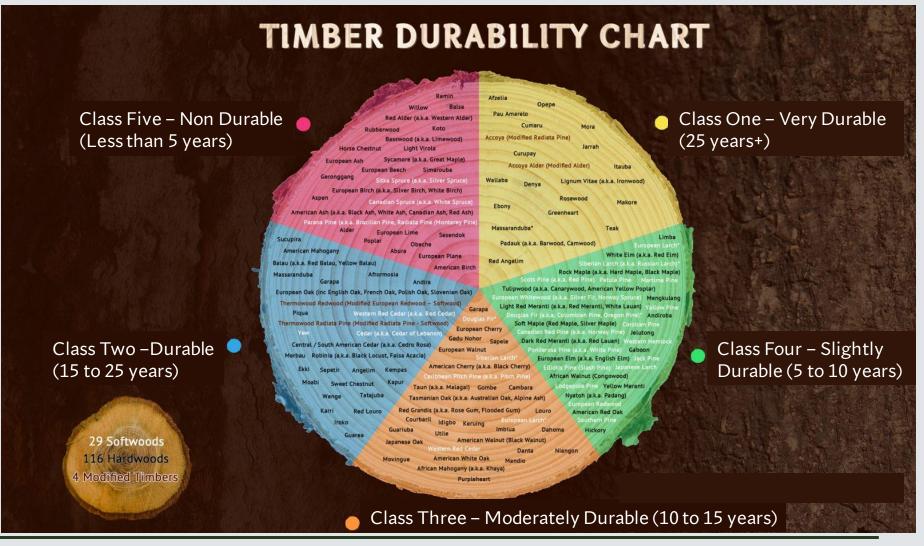


Figure 3: Timber Grades and Species [3]

2.0 SCOPE – TASK 2: Preliminary Design and Analysis

Task 2.2: Design Decision Matrix

- Create three initial, qualitative/relative designs with characteristics such as roof type and window features
- Matrix based on cost, aesthetics, and constructability to maximize competition points

Table 1: Example of Qualitative Initial Design Decisions

Aspect	Design 1	Design 2	Design 3
Roof Type	Mono-Pitched	Trusses	Ridge Beam
Window Size	2' wide	1.5' wide	1' wide
Window Shape	Square	Rectangle	Triangle
Window Placement	Off-Centered and Unstacked	Off-Centered and Stacked	Centered and Stacked



Figure 4: Example of Qualitative Window Design [4]

2.0 SCOPE - TASK 3: Final Design and Analysis

Task 3.1: Determination of Loads

- Gravity and lateral
- Using competition rules and estimated self-weight

Task 3.2: Roof Design

- Framing members
- Roof diaphragms

Task 3.3: Wall Design

- Framing members
- Shear Walls

Task 3.4: Floor Design

- Framing members
- Floor Diaphragm
- Cantilever Beam for 150 lb point load

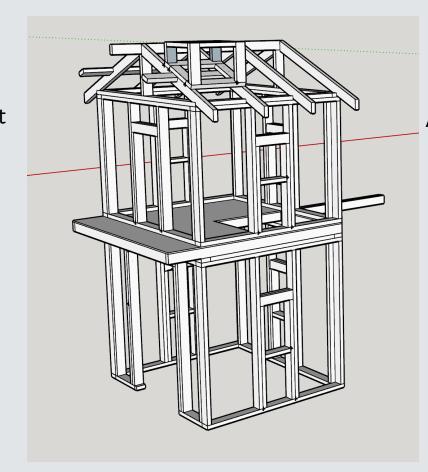


Figure 5: Model of Structure [5]

Equation 1[5]: Allowable Stress Design

$$\frac{R_n}{\Omega} \ge R_a$$

 R_n : Nominal Capacity

Ω: Safety Factor R_a : Applied Load

2.0 SCOPE – TASK 4: Modeling

For ASCE Submittal

Task 4.1: 2D Structural Drawings

AutoCAD per ASCE Rules

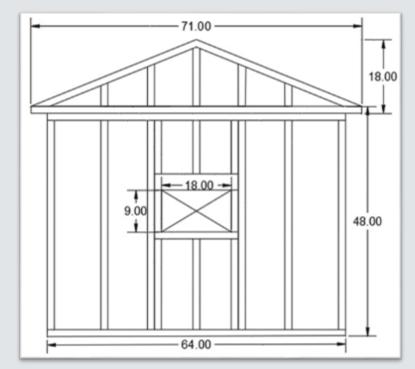


Figure 6: Example of Structural Drawing [6]

Task 4.2: 3D Building Informational Modeling (BIM)

Revit per ASCE Rules

Figure 7: Example of BIM Modeling [7]

2.0 SCOPE – TASK 5: Construction (at NAU)

Task 5.1: Material Acquirement and Prefabrication

- Timber from HomeCo
- Hardware provided by Simpson Strong Tie
- Measure and cut all members
- Prefabricate the wall panels

Task 5.2: Construction Practice

- To prepare for 90-minute competition
- Team roles and screw placement

Figure 8: 2022 Prefabrication [1]

Figure 9: 2022 Prefabrication [1]

2.0 SCOPE – TASK 6: Competition (at USU)

Task 6.1: Trailer Preparation and Transportation

- Packing the trailer with other ISWS teams
- Material and personnel transportation to USU

Task 6.2: Competition Build Day

- 90 minutes to complete structure in 20ft x 20ft area
- Judging of structure by professionals
- Test 150 lb point load on cantilever beam

Figure 10: 2022-2023 Competition Build Day [8]

2.0 SCOPE - TASK 7: Investigate Project Impacts

- Social
- Environmental
- Economic

Figure 11: Carbon Footprint Cycle [9]

2.0 SCOPE – TASK 8: Project Deliverables

Task 8.1: Capstone Deliverables

- 30% Submittal (Tasks 1-3 Completed)
- 60% Submittal (Task 4 Completed)
- 90% Submittal (Tasks 5, 8.2 Completed)
- Final Report, Presentation, and Website

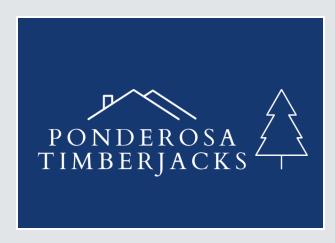


Figure 12: NAU TimberStrong Logo [10]

Task 8.2: Competition Deliverables

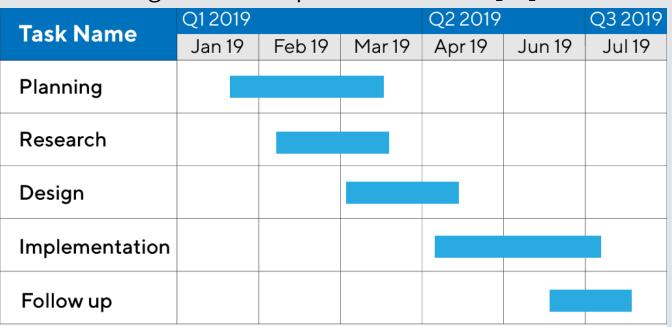
- Registration
- Project Report (Phase 1)
- 2D Drawings and 3D Modeling (Phase 2)
- Presentation (Phase 3)
- Visual Aid (Build Day)

Figure 13: ASCE Logo [11]

2.0 SCOPE – TASK 9: Project Management

Task 9.1: Resource Management

- Budget
- Staffing


Task 9.2: Schedule Management

Gantt Chart

Task 9.3: Meetings

- Team
- Client
- Mentee
- Technical Advisor
- Grading Instructor

Figure 14: Example of Gantt Chart [12]

2.9 SCOPE – Project Exclusions

- ASCE Student Chapter Report and Dues
- Anchor Bolt Placement

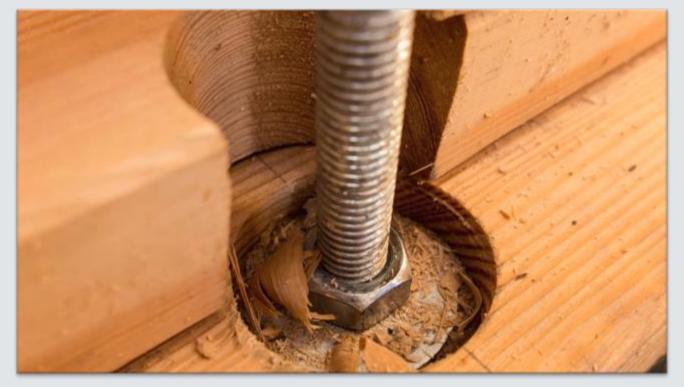
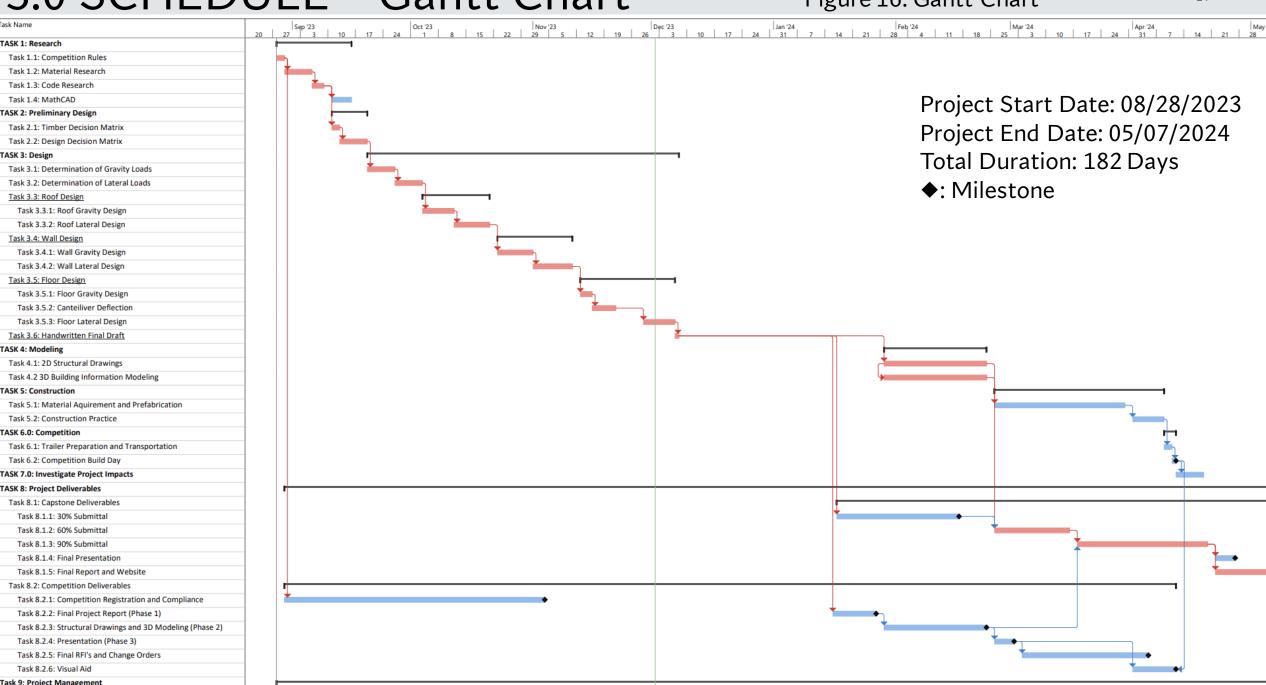



Figure 15: Anchor Bolt [13]

Figure 16: Gantt Chart

3.0 SCHEDULE – Gantt Chart

4.0 STAFFING

Senior Engineer:

- Project management
- QA/QC

Engineer:

- Design
- Reporting/ deliverables

Intern:

- AutoCAD/Revit
- Construction
- Learn each task

Field Technician:

- Prefabrication and material acquirement
- Builds in competition

Safety Officer:

- Enforces safety regulations
- Provides construction oversight

Table 2: Staffing Matrix

Position	Senior Engineer	Engineer	Field Technician	Intern	Safety Officer	TOTAL
Task 1: Background Research	3	8	3	5	1	20
Task 2: Preliminary Design & Analysis	2	6	0	2	0	10
Task 3: Final Design & Analysis	14	54	0	22	0	90
Task 4: Modeling	2	12	0	16	0	30
Task 5: Construction	0	4	25	25	19	73
Task 6: Competition	0	0	19	9	4	32
Task 7: Investigate Project Impacts	3	0	3	0	1	7
Task 8: Project Deleiverables	18	48	3	12	0	81
Task 9: Project Management	30	53	3	25	1	112
TOTAL	72	185	56	116	26	455

5.0 COST OF ENGINEERING SERVICES

Personnel:

Hours

Travel:

- Van Rental
- Hotel Rooms
- Per Diem

Lab Use:

Field Station

Materials:

- Timber
- Fasteners/Hardware
- Decorations

Table 3. Cost of Services								
Description	Quantity	Unit of Measure	Rate (\$)	Cost (\$)				
Personnel								
Senior Engineer	71	Hr.	250.00	17,750				
Engineer	185	Hr.	160.00	29,600				
Field Technician	56	Hr.	60.00	3,360				
Intern	113	Hr.	40.00	4,520				
Safety Officer	26	Hr.	85.00	2,210				
	\$57,440							
Travel For Competition	ı							
Transportation	600	Miles	0.42	252				
Van Rental	3	Day	71.40	214				
Hotel Rooms	3	Nights (3 Rooms)	480.00	1,440				
Per Diem	8	People (\$60 per day for 3 days)	180.00	1,440				
	\$3,346							
Lab Use								
Field Station "Farm"	7	Days	100.00	700				
		Sub	total Lab Use	\$700				
Materials								
2x4x8 Hem Fir	80	Unit	5.69	455				
2x4x10 Hem Fir	2	Unit	10.67	21				
OSB	15	Sheets	29.98	450				
Fasteners	2	Unit	40.53	81				
Connectors / Hardware	1	Unit	130.30	130				
Paint	3	GAL	40.00	120				
	\$1,258							
			Project Total	\$62,744				

Table 3. Cost of Services

References

- [1] J. Hays, Construction Photos, Flagstaff and Las Vegas, 2022.
- [2] J. Hays, MathCAD Example, Flagstaff, 2023.
- [3] "Timber durability classes," The Wild Deck Company, https://www.thewilddeckcompany.co.uk/about/timber-durability-classes/(accessed Nov. 26, 2023).
- [4] J. Hays, Window Drawing, Flagstaff, 2023.
- [5] M. Clitso, SketchUp Model, Flagstaff, 2023.
- [6] J. Hays, Structure Design Sketch, Flagstaff, 2023.
- [7] M. Clitso, Structure Design Sketch, Flagstaff, 2023.
- [8] UNR Photography, Construction Photos, Reno, 2023.
- [9] P. by W. Shoutis, "The wonders of wood buildings," USDA, https://www.usda.gov/media/blog/2016/06/03/wonders-wood-buildings [Accessed 8 October 2023).
- [10] J. Hays, NAU TimberStrong Logo, Flagstaff, 2023.
- [11] "ASCE Homepage," ASCE, 2023. [Online]. Available: https://www.asce.org/. [Accessed 09 10 2023].
- [12] "Gantt chart," What is a Gantt Chart? | Examples and Best Practices, https://www.productplan.com/glossary/gantt-chart/ (accessed Nov. 26, 2023).
- [13] D. Brandt, "How To Attach Wood To Concrete (Do It Right The First Time)," Building Elements, 12 March 2023. [Online]. Available: https://greenbuildingelements.com/how-to-attach-wood-to-concrete/. [Accessed 8 October 2023].

Questions?