
Metodyki programowania

Istnieją trzy główne metodyki programowania:

• Programowanie strukturalne

• Programowanie proceduralne

• Programowanie obiektowe

Zastosowanie "wyższych" metodyk programowania wiąże się zawsze z dodatkowym

nakładem pracy, jednak przynosi znaczne korzyści – przy bardziej złożonych programach ten

nakład pracy bardzo szybko się zwraca

DRY (ang. don't repeat yourself)

• Dodatkowa korzyść z programowania proceduralnego oraz obiektowego to możliwość

wielokrotnego użycia kodu.

• Postulat DRY zaleca unikanie powtórzeń kodu (np. przez Ctrl-C, Ctrl-V), do czego

właśnie służą wyższe metodyki: fragment kodu można "zamknąć" w postaci

oddzielnej funkcji lub klasy i odwołać się do niego, zamiast go kopiować.

• Co ważne, DRY zmniejsza też liczbę błędów (zatem redukuje czas potrzebny na ich

poprawianie) – jeżeli funkcja zawiera błędy, to trzeba je poprawić tylko w jednym

miejscu, zaś raz opracowana i pozbawiona błędów funkcja już zawsze będzie działać

poprawnie

• DRY ułatwia również utrzymanie kodu – jeżeli jakiś aspekt programu trzeba ulepszyć

(np. zastosować szybszy algorytm), to wystarczy to zrobić w jednym miejscu

• Skrajne podejście DRY widać np. w języku Java, gdzie zaleca się stosowanie zasady

jeden plik = jedna klasa (publiczna) – w ten sposób każda klasa może łatwo być użyta

wielokrotnie

• Postulat DRY dotyczy też innych aspektów programowania, np. użycia narzędzi

programistycznych, kompilacji warunkowej, a nawet definiowania stałych

Podprogram

Podprogram to wydzielony fragment kodu, "leżący" poza programem głównym, który można

wywołać – następuje wówczas skok do podprogramu, jego wykonanie, po czym tzw. skok

powrotny, tj. powrót do programu głównego, dokładnie w to samo miejsce, z którego

podprogram został wywołany. Mechanizm ten jest na tyle uniwersalny, że podprogram może

wywołać inny podprogram, a nawet samego siebie (rekurencja), a powrót zawsze jest

wykonywany bezbłędnie

Call foo

Call foo

foo

Call foo2 foo2

Call foo2

Stosowanie podprogramów służy przede wszystkim dwóm celom:

• Wielokrotne użycie kodu

Każda funkcja to spełnienie postulatu DRY – napisz raz, używaj wiele razy

• Dekompozycja

Bardziej złożone zadania można rozbić na prostsze części, każda w postaci funkcji

Zalecenia DRY dotyczące funkcji:

• Czynność, która powtarza się choćby dwa razy, należy przenieść do funkcji

• Czynność, mającą więcej niż 20 linii kodu, należy podzielić na funkcje

• Czynność, która wymaga użycia instrukcji zagnieżdżonych 3 razy

(np. for-for-if), dobrze jest robić na funkcje

Metody statyczne i dynamiczne

Metody (tj. funkcje będące elementami klasy) mogą być deklarowane jako statyczne bądź

(domyślnie) dynamiczne:

• Metody statyczne mogą być wywoływane wyłącznie poprzez klasę (nie można

wywołać metody statycznej przez obiekt danej klasy)

• Metody dynamiczne – odwrotnie niż statyczne – mogą być wywołane wyłącznie przez

obiekt klasy

Int32 x, y = 7;
String s;

x = Int32.Parse("13"); // ok., metoda statyczna
x.Parse("13"); // błąd

s = y.ToString(); // ok., metoda dynamiczna
s = Int32.ToString(7); // błąd

• Niektóre nowsze języki programowania (w tym m.in. Java, C#) wymuszają metodykę

programowania obiektowego – nie można np. tworzyć funkcji, a wyłącznie metody –

w ogóle wszystko, co tworzy się w C# jest, z zasady, częścią jakiejś klasy

• Jeżeli potrzebne są "funkcje", to grupuje się je w specjalnych klasach narzędziowych

(ang. Utility), gdzie są deklarowane jako statyczne.

Klasa Math jest typowym przykładem takiej klasy – są w niej zawarte funkcje

matematyczne, a klasa Math do niczego więcej nie służy. Podobnych klas w C# jest

więcej, np. klasa File do operacjach na plikach albo Directory do operacji na

katalogach. Klasy narzędziowe zawierają wyłącznie metody statyczne, a w

konsekwencji nie da się utworzyć obiektu takiej klasy

Definicja funkcji

• Definicja funkcji musi być umieszczona wewnątrz klasy

Można wykorzystać klasę Program (w której jest funkcja Main) albo stworzyć własną;

można też utworzyć nowy plik i tam utworzyć klasę (polecenie Project – Add class)

• Definicja składa się z metryki funkcji i ciała (treści) funkcji:

• Atrybuty

Oprócz atrybutu static można podać modyfikator dostępu:

- public – funkcja będzie dostępna w dowolnej innej części programu

- private – funkcja prywatna, dostępna tylko w klasie, gdzie jest zdefiniowana

Domyślnym modyfikatorem dostępu jest private

• Typ rezultatu

Dowolny typ języka C# albo słowo kluczowe void (ang. nic, brak) jeżeli funkcja nie

dostarcza rezultatu (odpowiednik procedury języka Pascal). Może to być zarówno typ

wartościowy (a w tym typ prosty), jak i referencyjny (a w tym tablica lub obiekt)

• Nazwa

Obowiązują zwykłe zasady dla nazw.

Dla funkcji zaleca się stosowanie konwencji Pascal i czasowników lub wyrażeń

czasownikowych (np. WriteLine, Parse, Compare), chociaż są wyjątki, np. funkcje

matematyczne (Sqrt, Pow, Sin, …)

• Lista argumentów (ściślej: parametrów formalnych)

Lista oddzielonych przecinkami argumentów funkcji, zawsze w postaci par typ nazwa.

Lista argumentów może być pusta. Argumenty w ciele funkcji są traktowane jak

zmienne lokalne – można dowolnie odczytywać (używać) i modyfikować ich

wartości; Każda funkcja to odrębny blok – nazwy argumentów i zmiennych lokalnych

mogą się powtarzać w wielu funkcjach

• Ciało funkcji

Blok instrukcji (zatem "{" oraz "}"), zawierający dowolne instrukcje oraz wykonujący

zadania przewidziane dla funkcji;

Jeżeli funkcja zwraca rezultat – tj. ma typ rezultatu inny niż void – to ciało funkcji

musi zawierać instrukcję return

Funkcje "bezrezultatowe" mogą zawierać instrukcję return, jednak nie jest to

wymagane

Instrukcja return

• Dla funkcji mających rezultat inny niż void instrukcja return służy głównie do

dostarczenia rezultatu i ma postać:

return wyrażenie;

 przy czym wyrażenie musi mieć typ rezultatu taki sam, jak typ rezultatu funkcji

 (albo typ automatycznie konwertowany do niego)

• Dla funkcji "bezrezultatowych" return nie może dostarczać rezultatu, należy stosować

wariant:

return;

• Instrukcja return ma jeszcze drugie zadanie – natychmiastowe zakończenie

wykonywania funkcji – może wystąpić w kodzie funkcji więcej niż raz; Z uwagi na

fakt, że wykonanie return kończy funkcję, ma to sens jedynie w połączeniu z

instrukcją warunkową, np.:

public static Int32 Silnia(Int32 n)
{
 if (n <= 1)
 return 1;

 // obliczenia dla n>1 […]
 return s;
}

Wywołanie funkcji

Wywołanie funkcji wymaga podania nazwy i listy argumentów:

Lista argumentów (ściślej: parametry aktualne)

• Musi zawierać argumenty w liczbie zgodnej z metryką funkcji;

Jeżeli lista argumentów jest pusta, to w wywołaniu należy użyć pustej listy (pustych

nawiasów) – bez tego funkcja nie zostanie wywołana

• Typ argumentów musi być zgodny z metryką funkcji;

Jako kolejne argumenty można podać dowolne wyrażenia, dla których typ rezultatu

jest zgodny z typem argumentu funkcji lub jest automatycznie konwertowany:

• Wywołanie funkcji mającej rezultat można umieścić w dowolnym wyrażeniu lub

instrukcji wyrażeniowej, gdzie ma typ identyczny z typem rezultatu funkcji
Int32 GetFive()
{
 return 5;
}
Int32 x = 13 / GetFive(); // 2 czy 2,6 ?

• Powyższe nie jest obowiązkowe, a dla funkcji bezrezultatowej zabronione

• Podczas wykonywania wyrażenia, najpierw zostanie wywołana funkcja (ma

najwyższy priorytet ze wszystkich operatorów), a następnie wartość dostarczona jako

rezultat funkcji zostanie użyta w wyrażeniu:

Double x = 13.0 + 2 * Math.Sqrt(9.0); // jak 13 + 2*3

 Rezultatu funkcji (lub wyrażenia zawierającego taki rezultat) można użyć w każdym

 wyrażeniu C# - nie tylko w przypisaniu, ale też jako rozmiar tablicy, warunek pętli,

 inkrementacja pętli for itd. itp.

for (i=0; i < GetFive(); i++) // jak i<5
Int32[] t = new Int32[ReadTabSize()];
do {
 // …
} while (GetApproximationError()>errorTheshold);

• Argumenty są przekazywane do funkcji przez wartość:
Int32 Foo (Int32 x)
{
 x++;
 return x;
}

Int32 a = 7;
Foo (a); // a=7 (a nie 8)

• Argumenty funkcji mogą mieć zdefiniowane wartości domyślne.

Przy wywołaniu funkcji podawanie tych argumentów jest opcjonalne

– jeżeli nie zostaną podane, brana jest wartość domyślna

W metryce funkcji po takim argumencie nie mogą wystąpić argumenty zwykłe,

podobnie przy wywołaniu nie można pominąć jednego argumentu i podać wartość

następnego

Int32 Foo (Int32 x, Int32 ix = 1, Int32 dx = 0)
{
 return x + ix - dx;
}

Int32 a = 7, b;
b = Foo(a); // Foo(a, 1, 0)
b = Foo(a, 13); // Foo(a, 13, 0), a nie Foo(a, 1, 13)

Przekazywanie argumentu p. referencję

• Można napisać funkcję tak, aby przekazywać jej jako argument referencję do

zmiennej – wówczas zmiana wartości argumentu jest tożsama zmianie wartości

zmiennej, przekazanej do funkcji podczas jej wywołania – do tego celu służą atrybuty

argumentów ref oraz out

• Argumenty ref służą do dwukierunkowej komunikacji z funkcją, przekazują wartość,

która może być w funkcji zmodyfikowana;

• Przy wywołaniu funkcji z argumentem ref lub out, należy obowiązkowo powtórzyć

ten atrybut – kod jest bardziej czytelny, nie ma wątpliwości że argument jest

przekazywany przez referencję

• Argument ref jest referencją (inną nazwą tej samej zmiennej):
void Foo (ref Int32 x)
{
 x++;
}

Int32 a = 7;
Foo(ref a); // a = 8 (a nie 7)

 Każda zmiana x powoduje de facto zmianę wartości zmiennej,

 do której x jest referencją

• Przekazywanie do funkcji argumentów i dostarczanie przez funkcję rezultatu jest

mechanizmem na tyle uniwersalnym, że w roli argumentów i rezultatu mogą też

wystąpić zmienne typu referencyjnego – np. tablice lub obiekty klas

W językach C/C++ przekazywanie tablicy jako argumentu lub rezultatu funkcji było

kłopotliwe, ponieważ w tych językach tablica nie zawiera informacji o swoim

rozmiarze; w C# ten problem nie występuje:

public static Foo (Int32[] t)
{
 Int32 len = t.Length;
 // …
}

Funkcje rekurencyjne

• Rekurencja polega na tym, że funkcja wywołuje siebie samą;

Oczywiście wywołanie funkcji przez siebie samą musi nastąpić

z inną wartością argumentu, a ciąg argumentów kolejnych wywołań musi być

skończony, inaczej program wpadnie w nieskończoną pętlę:

void BadRecursion (Int32 a)
{
 BadRecursion(a);
}

• Istnieje szereg problemów, które można niemal równie łatwo rozwiązać za pomocą

rekurencji, jak i bez niej, np. obliczanie silni, obliczanie NWD metodą Euklidesa:

NWD(A, B)
IF B=0
 return A
 ELSE
 return NWD(B, A mod B)

• Wersja rekurencyjna wygląda bardzo elegancko (nie ma jawnej pętli), ale zużywa

zasoby – należy stosować z rozwagą.

• Są przypadki, kiedy rekurencja dramatycznie zwiększa złożoność

– np. liczby Fibonacciego, algorytm z pętlą ma złożoność O(n),

rekurencja – O(2n)

• Są też przypadki, kiedy jest nieodzowna, np. algorytm quicksort bez rekurencji jest

niemal niemożliwy do zrealizowania

Funkcje rozszerzające

• Klasa, zgodnie z paradygmatem programowania obiektowego, jest zamknięta – jeżeli

pochodzi z biblioteki, to nie można jej zmienić – nie można zmienić metod (funkcji)

klasy ani dodać nowych;

• Można zdefiniować klasę potomną istniejącej klasy (chociaż są wyjątki, definicja

klasy może zabraniać tworzenia klas potomnych) i dodać tam nowe metody albo

nadpisać istniejące;

Niestety nie zawsze można zastąpić klasę bazową przez klasę potomną

• Z drugiej strony – nie sposób przewidzieć komu i do czego klasa się przyda, więc nie

można w klasie umieścić wszystkich możliwych metod (klasy powinny mieć ściśle

określony i relatywnie wąski obszar odpowiedzialności)

 ➔ C# oferuje ciekawy mechanizm uzupełnienia definicji klas bez korzystania

 z mechanizmu dziedziczenia – funkcje rozszerzające (ang. extension functions)

• Funkcje rozszerzające muszą być definiowane w klasie statycznej

(klasa Program, do której należy funkcja Main w aplikacjach konsolowych, NIE jest

taką klasą)

• Funkcje rozszerzające muszą być definiowane jako statyczne;

powinny też być publiczne, inaczej nie będzie jak z nich skorzystać poza klasą, w

której są zdefiniowane

• Pierwszy argument funkcji rozszerzającej należy poprzedzić słowem kluczowym this;

Funkcja staje się rozszerzeniem typu argumentu:

public static class DoubleUtils
{
 public static Double TheSame(this Double x)
 {
 return x;
 }
}

• Funkcje rozszerzające są nadal funkcjami statycznymi i można je wywoływać jak

wszystkie inne funkcje statyczne: przez klasę, w której zostały zdefiniowane:

Double a = 13.0, b;
b = DoubleUtils.TheSame(a);

• Jeżeli funkcja rozszerzająca jest wywoływana jako rozszerzenie,

to przy wywołaniu należy pominąć pierwszy argument – w jego miejsce wskakuje

obiekt, na rzecz którego funkcja została wywołana:

Double a = 13.0, b;
b = a.TheSame();

Zadania

Proszę napisać program, który…

1. Wyświetla w zgrabnej tabelce wartości funkcji sinus i cosinus, dla kątów w zakresie od 0

do 90 stopni, co 10 stopni. Funkcje trygonometryczne w C# posługują się kątami

wyrażonymi w radianach, należy zatem przeliczyć stopnie na radiany. Warianty:

a. Bezpośrednio, przeliczenie stopnie-radiany w wywołaniu funkcji

b. Z użyciem własnej funkcji stopnie-radiany, Math.Sin(Tools.Deg2Rad(fi))

c. Z użyciem własnej funkcji przyjmującej kąt w stopniach, Tools.SinFmDeg(fi)

d. Jak w c, ale funkcja zdefiniowana jako rozszerzająca, fi.SinFmDeg()

2. Wyświetla w zgrabnej tabelce wartości logarytmów o podstawie podanej przez

użytkownika, dla liczb z zakresu od 16 do 256, co 16. Warianty zmiany podstawy

logarytmu:

a. Bezpośrednio, log10(x)/log10(p)

b. Z użyciem własnej funkcji, Tools.Log(x, p)

c. Jak w b, ale funkcja zdefiniowana jako rozszerzająca, x.Log(p)

3. Oblicza sumę dwóch liczb podanych przez użytkownika (nazwijmy je a i b), ale do

obliczenia sumy używa własnej funkcji Suma. Następnie, nie zmieniając funkcji suma,

tylko sposób jej wywołania, obliczyć:

a. 2a + 3b

b. ab + 7

c. √a + b2

d. a + b + 1 (nie wolno używać „+”!)

4. Oblicza i wyświetla pierwiastki równania kwadratowego (wersja uproszczona, bierzemy

pod uwagę tylko dwa przypadki, tj. delta większa lub równa zero – dwa pierwiastki, delta

mniejsza niż zero – brak pierwiastków). W obliczeniach użyć własnych funkcji Suma,

Różnica, Iloczyn i Iloraz zamiast dwuargumentowych operatorów arytmetycznych

5. * Wykonuje zadania z punktu 4, ale wykorzystując funkcje Suma, Różnica, Iloczyn i

Iloraz jako funkcje rozszerzające

6. Znajduje parę liczb względnie pierwszych (NWD=1) z zakresu liczb podanych przez

użytkownika – wariant stochastyczny (obie liczby są losowane, do skutku). Do

wyznaczania NWD należy zdefiniować własną funkcję

7. * Wykonuje zadania z punktu 6, ale funkcja NWD jest rekurencyjna

8. * Znajduje i wyświetla wszystkie pary liczb względnie pierwszych z zakresu liczb

podanych przez użytkownika

9. Wyświetla wartości silni dla liczb z zakresu podanego przez użytkownika. Do obliczenia

silni należy zdefiniować funkcję

10. Wykonuje zadania z punktu 8, ale funkcja obliczająca silnię jest rekurencyjna

11. * Wykonuje zadania z punktu 8, ale funkcja obliczająca silnię jest rekurencyjna i użyta

jako rozszerzająca: n.Silnia()

12. Oblicza i wyświetla liczby Fibonacciego, z zakresu od 1 do 50. Do obliczania liczb ciągu

Fibonacciego zdefiniować funkcję rekurencyjną

13. * Wykonuje zadania z punktu 10 i dodatkowo mierzy czas wykonania obliczeń, dla

każdego elementu ciągu oddzielnie

14. * Wykonuje zadania z punktu 10, ale wykorzystując algorytm bez rekurencji.

15. Oblicza i wyświetla sumę dwóch liczb podanych przez użytkownika. Do obliczania sumy

należy użyć delegacji. Warianty:

a. Delegat w postacji zdefiniowanej wcześniej funkcji Suma

b. Delegat w postaci wyrażenia lambda

16. * Oblicza i wyświetla sumę oraz iloczyn dwóch liczb podanych przez użytkownika. Do

obliczań należy użyć delegacji i wyrażeń lambda

17. Tworzy tablicę o rozmiarze podanym przez użytkownika, wypełnia ją wylosowanymi

liczbami i sortuje, używając algorytmu gnoma. Do oddzielnych funkcji należy przenieść

(w tej kolejności):

a. Tworzenie tablicy i wypełnianie jej losowymi liczbami

b. Drukowanie tablicy

c. Sprawdzenie, czy tablica jest posortowana

d. Sortowanie

18. Wykonuje zadania z punktu 17, ale używa funkcji do dekompozycji algorytmu – należy

zdefiniować jako prywatne funkcje odpowiedzialne za funkcjonalnie oddzielne części

algorytmu gnoma (uwaga na ref!)

a. Zamianę sąsiednich liczb miejscami

b. Wykonanie kroku w lewo, gdy gdy ti > ti+1

c. Wykonanie kroku w prawo, gdy ti ≤ ti+1

19. Wykonuje zadania z punktu 17, ale funkcja użyta jako rozszerzająca: t.Gnom()

20. ** Wykonuje zadania z punktu 17, ale sortuje według innego kryterium (np. nieparzyste

przed parzystymi). Kryterium sortowania należy przekazać w delegacji

21. Oblicza całkę oznaczoną wybranej prostej funkcji (np. funkcji liniowej lub kwadratowej),

w przedziale podanym przez użytkownika

22. ** Wykonuje zadania z punktu 21, ale funkcję podcałkową należy przekazać w delegacji

