Metodyki programowania

Istniejg trzy gtowne metodyki programowania:

e Programowanie strukturalne

e Programowanie proceduralne

e Programowanie obiektowe
Zastosowanie "wyzszych" metodyk programowania wigze si¢ zawsze z dodatkowym
naktadem pracy, jednak przynosi znaczne korzysci — przy bardziej ztozonych programach ten
naktad pracy bardzo szybko si¢ zwraca

DRY (ang. don't repeat yourself)

e Dodatkowa korzys¢ z programowania proceduralnego oraz obiektowego to mozliwosé
wielokrotnego uzycia kodu.

e Postulat DRY zaleca unikanie powtorzen kodu (np. przez Ctrl-C, Ctrl-V), do czego
wiasnie stuzg wyzsze metodyki: fragment kodu mozna "zamkna¢" w postaci
oddzielnej funkcji lub klasy i odwota¢ si¢ do niego, zamiast go kopiowac.

e Co wazne, DRY zmniejsza tez liczbe btedow (zatem redukuje czas potrzebny na ich
poprawianie) — jezeli funkcja zawiera biedy, to trzeba je poprawic tylko w jednym
miejscu, za$ raz opracowana i pozbawiona btgdow funkcja juz zawsze bedzie dziataé
poprawnie

¢ DRY ufatwia réwniez utrzymanie kodu — jezeli jaki$§ aspekt programu trzeba ulepszy¢
(np. zastosowac szybszy algorytm), to wystarczy to zrobi¢ w jednym miejscu

e Skrajne podejscie DRY wida¢ np. w jezyku Java, gdzie zaleca si¢ stosowanie zasady
jeden plik = jedna klasa (publiczna) — w ten sposob kazda klasa moze tatwo by¢ uzyta
wielokrotnie

e Postulat DRY dotyczy tez innych aspektow programowania, np. uzycia narzedzi
programistycznych, kompilacji warunkowej, a nawet definiowania statych

Podprogram

Podprogram to wydzielony fragment kodu, "lezacy" poza programem gtownym, ktéry mozna
wywola¢ — nastepuje woéwczas skok do podprogramu, jego wykonanie, po czym tzw. skok
powrotny, tj. powr6t do programu gtdéwnego, doktadnie w to samo miejsce, z ktdrego
podprogram zostat wywotany. Mechanizm ten jest na tyle uniwersalny, ze podprogram moze
wywola¢ inny podprogram, a nawet samego siebie (rekurencja), a powrot zawsze jest
wykonywany bezbtednie

foo

Call foo .—/““; Call foo2 .‘\ i
““ ..,

R Call foo2 @-}*"""""

“ ;
.
** L - ceo

Stosowanie podprogramow stuzy przede wszystkim dwoém celom:
e Wielokrotne uzycie kodu
Kazda funkcja to spetnienie postulatu DRY — napisz raz, uzywaj wiele razy
e Dekompozycja
Bardziej ztozone zadania mozna rozbi¢ na prostsze czesci, kazda w postaci funkcji

Zalecenia DRY dotyczace funkcji:
e (Czynnos¢, ktora powtarza si¢ cho¢by dwa razy, nalezy przenies¢ do funkcji
e Czynno$¢, majacy wigeej niz 20 linii kodu, nalezy podzieli¢ na funkcje
e (Czynno$¢, ktora wymaga uzycia instrukcji zagniezdzonych 3 razy
(np. for-for-if), dobrze jest robi¢ na funkcje

Metody statyczne i dynamiczne

Metody (tj. funkcje bedace elementami klasy) moga by¢ deklarowane jako statyczne badz
(domyslnie) dynamiczne:
e Metody statyczne moga by¢ wywolywane wytacznie poprzez klasg (nie mozna
wywola¢ metody statycznej przez obiekt danej klasy)
e Metody dynamiczne — odwrotnie niz statyczne — mogg by¢ wywolane wytacznie przez
obiekt klasy

Int32 x, y = 7;
String s;

X = Int32.Parse("13");
x.Parse("13");

metoda statyczna
3:

s metoda dynamiczna

S

y.ToString(Q);

// ok.
// btad
) // ok.
Int32.ToString(7); // btad

3:

¢ Niektore nowsze jezyki programowania (w tym m.in. Java, C#) wymuszaja metodyke
programowania obiektowego — nie mozna np. tworzy¢ funkcji, a wylacznie metody —
w ogoble wszystko, co tworzy si¢ w C# jest, z zasady, czg$cig jakiejs klasy

e Jezeli potrzebne sg "funkcje", to grupuje si¢ je w specjalnych klasach narzedziowych
(ang. Utility), gdzie sa deklarowane jako statyczne.
Klasa Math jest typowym przyktadem takiej klasy — sag w niej zawarte funkcje
matematyczne, a klasa Math do niczego wiecej nie stuzy. Podobnych klas w C# jest
wiecej, np. klasa File do operacjach na plikach albo Directory do operacji na
katalogach. Klasy narzedziowe zawierajg wytacznie metody statyczne, a w
konsekwencji nie da si¢ utworzy¢ obiektu takiej klasy

Definicja funkcji

Definicja funkcji musi by¢ umieszczona wewnatrz klasy

Mozna wykorzysta¢ klase Program (w ktorej jest funkcja Main) albo stworzy¢ wilasna;
mozna tez utworzy¢ nowy plik i tam utworzy¢ klas¢ (polecenie Project — Add class)
Definicja sktada si¢ z metryki funkcji i ciata (tresci) funkcji:

Atrybuty Typ rezultatu Nazwa Lista argumentéw

/_A \/_A\fj\/_/\ ™

Mervka " public static Double Suma (Double a, Double b)

{
Double s;
Ciato S = a + b;
return s;
¥
Atrybuty

Oproécz atrybutu static mozna podaé¢ modyfikator dostepu:

- public — funkcja bedzie dostgpna w dowolnej innej cze$ci programu

- private — funkcja prywatna, dostepna tylko w klasie, gdzie jest zdefiniowana
Domyslnym modyfikatorem dostepu jest private

Typ rezultatu

Dowolny typ jezyka C# albo stowo kluczowe void (ang. nic, brak) jezeli funkcja nie
dostarcza rezultatu (odpowiednik procedury jezyka Pascal). Moze to by¢ zaréwno typ
wartos$ciowy (a w tym typ prosty), jak i referencyjny (a w tym tablica lub obiekt)
Nazwa

Obowigzujg zwykte zasady dla nazw.

Dla funkcji zaleca si¢ stosowanie konwencji Pascal i czasownikdéw lub wyrazen
czasownikowych (np. WriteLine, Parse, Compare), chociaz sa wyjatki, np. funkcje
matematyczne (Sqrt, Pow, Sin, ...)

Lista argumentow (Scislej: parametrow formalnych)

Lista oddzielonych przecinkami argumentow funkcji, zawsze w postaci par typ nazwa.
Lista argumentéw moze by¢ pusta. Argumenty w ciele funkcji sg traktowane jak
zmienne lokalne — mozna dowolnie odczytywac¢ (uzywac) i modyfikowac ich
wartos$ci; Kazda funkcja to odrebny blok — nazwy argumentéw i zmiennych lokalnych
mogg si¢ powtarza¢ w wielu funkcjach

Cialo funkcji

Blok instrukcji (zatem "{" oraz "}"), zawierajacy dowolne instrukcje oraz wykonujacy
zadania przewidziane dla funkcji;

Jezeli funkcja zwraca rezultat — tj. ma typ rezultatu inny niz void — to ciato funkcji
musi zawiera¢ instrukcje return

Funkcje "bezrezultatowe" moga zawiera¢ instrukcje return, jednak nie jest to
wymagane

Instrukcja return

e Dla funkcji majacych rezultat inny niz void instrukcja return sthuzy gtéwnie do
dostarczenia rezultatu i ma postac:

return wyrazenie;

przy czym wyrazenie musi mie¢ typ rezultatu taki sam, jak typ rezultatu funkcji
(albo typ automatycznie konwertowany do niego)

e Dla funkcji "bezrezultatowych" return nie moze dostarczaé rezultatu, nalezy stosowac
wariant:

return;

e Instrukcja return ma jeszcze drugie zadanie — natychmiastowe zakonczenie
wykonywania funkcji — moze wystapi¢ w kodzie funkcji wigcej niz raz; Z uwagi na
fakt, ze wykonanie return konczy funkcje, ma to sens jedynie w potaczeniu z
instrukcjg warunkowa, np.:

public static Int32 Silnia(Int32 n)

if (n <= 1)
return 1;

// obliczenia dla n>1 [..]
return s;

}

Wywofanie funkcji
Wywotanie funkcji wymaga podania nazwy i listy argumentow:
Nazwa Lista argumentow

—

\
Suma (3, y)

Lista argumentow (Scislej: parametry aktualne)

e Musi zawiera¢ argumenty w liczbie zgodnej z metryka funkcji;
Jezeli lista argumentdw jest pusta, to w wywotaniu nalezy uzy¢ puste;j listy (pustych
nawiasow) — bez tego funkcja nie zostanie wywotana

e Typ argumentdw musi by¢ zgodny z metryka funkc;ji;
Jako kolejne argumenty mozna poda¢ dowolne wyrazenia, dla ktorych typ rezultatu
jest zgodny z typem argumentu funkcji lub jest automatycznie konwertowany:

e Wywotanie funkcji majacej rezultat mozna umiesci¢ w dowolnym wyrazeniu lub

instrukcji wyrazeniowej, gdzie ma typ identyczny z typem rezultatu funkeji
%nt32 GetFive()

return 5;

}
Int32 x = 13 / GetFive(Q; // 2 czy 2,6 ?
e Powyzsze nie jest obowigzkowe, a dla funkcji bezrezultatowej zabronione

e Podczas wykonywania wyrazenia, najpierw zostanie wywotana funkcja (ma
najwyzszy priorytet ze wszystkich operatorow), a nastepnie wartos¢ dostarczona jako
rezultat funkcji zostanie uzyta w wyrazeniu:

Double x = 13.0 + 2 * Math.sqrt(9.0); // jak 13 + 2%*3

Rezultatu funkcji (lub wyrazenia zawierajacego taki rezultat) mozna uzy¢ w kazdym
wyrazeniu C# - nie tylko w przypisaniu, ale tez jako rozmiar tablicy, warunek petli,
inkrementacja petli for itd. itp.

for (i=0; i < GetFive(); i++) // jak i<5
5nt%2[] t = new Int32[ReadTabSize()];
o}

} while (GetApproximationError()>errorTheshold);

e Argumenty s3 przekazywane do funkcji przez warto$¢:
Int32 Foo (Int32 Xx)

{
X++;
return Xx;

Int32 a = 7;
Foo (a); // a=7 (a nie 8)

e Argumenty funkcji moga mie¢ zdefiniowane wartosci domysine.
Przy wywotaniu funkcji podawanie tych argumentdéw jest opcjonalne
— jezeli nie zostang podane, brana jest wartos¢ domyslna
W metryce funkcji po takim argumencie nie mogg wystapi¢ argumenty zwykle,
podobnie przy wywotaniu nie mozna poming¢ jednego argumentu i poda¢ wartos¢
nastgpnego

Int32 Foo (Int32 x, Int32 ix = 1, Int32 dx = 0)
{

return x + ix - dx;

Int32 a = 7, b;
b = Foo(a); // Foo(a, 1, 0)
b = Foo(a, 13); // Foo(a, 13, 0), a nie Foo(a, 1, 13)

Przekazywanie argumentu p. referencje

e Mozna napisa¢ funkcje tak, aby przekazywac jej jako argument referencje do
zmiennej — wowczas zmiana warto$ci argumentu jest tozsama zmianie warto$ci
zmiennej, przekazanej do funkcji podczas jej wywotania — do tego celu stuzg atrybuty
argumentow ref oraz out

e Argumenty ref stuzg do dwukierunkowej komunikacji z funkcja, przekazuja wartos¢,
ktéra moze by¢ w funkcji zmodyfikowana;

¢ Przy wywotaniu funkcji z argumentem ref lub out, nalezy obowigzkowo powtorzy¢
ten atrybut — kod jest bardziej czytelny, nie ma watpliwosci ze argument jest
przekazywany przez referencj¢

* Argument ref jest referencjg (inng nazwg tej samej zmiennej):
void Foo (ref Int32 x)

X++;

}

Int32 a = 7;
Foo(ref a); // a =8 (a nie 7)

Kazda zmiana x powoduje de facto zmiang¢ warto$ci zmiennej,
do ktorej x jest referencja

e Przekazywanie do funkcji argumentow i dostarczanie przez funkcje rezultatu jest
mechanizmem na tyle uniwersalnym, ze w roli argumentéw i rezultatu moga tez
wystgpi¢ zmienne typu referencyjnego — np. tablice lub obiekty klas
W jezykach C/C++ przekazywanie tablicy jako argumentu lub rezultatu funkcji byto
ktopotliwe, poniewaz w tych jezykach tablica nie zawiera informacji o swoim
rozmiarze; w C# ten problem nie wystepuje:

public static Foo (Int32[] t)

Int32 len = t.Length;

//
}

Funkcje rekurencyjne

e Rekurencja polega na tym, ze funkcja wywotuje siebie sama;
Oczywiscie wywotanie funkcji przez siebie samg musi nastgpi¢
z inng warto$cig argumentu, a cigg argumentéw kolejnych wywotan musi by¢
skonczony, inaczej program wpadnie w nieskonczong petle:

void BadRecursion (Int32 a)

{

BadRecursion(a);

e Istnieje szereg problemdéw, ktore mozna niemal rdwnie tatwo rozwigzac za pomoca
rekurencji, jak 1 bez niej, np. obliczanie silni, obliczanie NWD metodg Euklidesa:

NwD(A, B)
IF B=0
return A
ELSE
return NwWD(B, A mod B)

e Wersja rekurencyjna wyglada bardzo elegancko (nie ma jawnej petli), ale zuzywa
zasoby — nalezy stosowaé z rozwaga.

e S przypadki, kiedy rekurencja dramatycznie zwigksza ztozonos¢
— np. liczby Fibonacciego, algorytm z petla ma ztozonos¢ O(n),
rekurencja — O(2")

e Satez przypadki, kiedy jest niecodzowna, np. algorytm quicksort bez rekurencji jest
niemal niemozliwy do zrealizowania

Funkcje rozszerzajgce

Klasa, zgodnie z paradygmatem programowania obiektowego, jest zamknigta — jezeli
pochodzi z biblioteki, to nie mozna jej zmieni¢ — nie mozna zmieni¢ metod (funkcji)
klasy ani doda¢ nowych;

Mozna zdefiniowa¢ klas¢ potomng istniejgcej klasy (chociaz sg wyjatki, definicja
klasy moze zabrania¢ tworzenia klas potomnych) i doda¢ tam nowe metody albo
nadpisac istniejace;

Niestety nie zawsze mozna zastapi¢ klas¢ bazowa przez klas¢ potomna

Z drugiej strony — nie sposob przewidzie¢ komu i do czego klasa si¢ przyda, wigc nie
mozna w klasie umiesci¢ wszystkich mozliwych metod (klasy powinny miec¢ $cisle
okreslony i relatywnie waski obszar odpowiedzialno$ci)

=>» C# oferuje cieckawy mechanizm uzupetnienia definicji klas bez korzystania
z mechanizmu dziedziczenia — funkcje rozszerzajace (ang. extension functions)

Funkcje rozszerzajace muszg by¢ definiowane w klasie statycznej

(klasa Program, do ktorej nalezy funkcja Main w aplikacjach konsolowych, NIE jest
takg klasag)

Funkcje rozszerzajace musza by¢ definiowane jako statyczne;

powinny tez by¢ publiczne, inaczej nie bedzie jak z nich skorzysta¢ poza klasa, w
ktoérej sa zdefiniowane

Pierwszy argument funkcji rozszerzajacej nalezy poprzedzi¢ stowem kluczowym this;
Funkcja staje si¢ rozszerzeniem typu argumentu:

public static class Doubleutils
public static Double TheSame(this Double x)

return Xx;

}
}

Funkcje rozszerzajace sg nadal funkcjami statycznymi i mozna je wywotywac jak
wszystkie inne funkcje statyczne: przez klase, w ktorej zostaty zdefiniowane:

Double a = 13.0, b;
b = DoubTleutils.TheSame(a);

Jezeli funkcja rozszerzajaca jest wywolywana jako rozszerzenie,
to przy wywotaniu nalezy poming¢ pierwszy argument — W jego miejsce wskakuje
obiekt, na rzecz ktérego funkcja zostata wywotana:

Double a = 13.0, b;
b = a.TheSame();

Zadania

Prosze napisa¢ program, ktory...

1.

Wyswietla w zgrabnej tabelce wartosci funkcji sinus i cosinus, dla katow w zakresie od 0
do 90 stopni, co 10 stopni. Funkcje trygonometryczne w C# postugujg si¢ katami
wyrazonymi w radianach, nalezy zatem przeliczy¢ stopnie na radiany. Warianty:

a. Bezposrednio, przeliczenie stopnie-radiany w wywotaniu funkcji

b. Z uzyciem wlasnej funkcji stopnie-radiany, Math.Sin(Tools.Deg2Rad(fi))

C. Z uzyciem wlasnej funkcji przyjmujacej kat w stopniach, Tools.SinFmDeg(f1)
d. Jak w c, ale funkcja zdefiniowana jako rozszerzajaca, fi.SinFmDeg()

Wyswietla w zgrabnej tabelce wartosci logarytméw o podstawie podanej przez
uzytkownika, dla liczb z zakresu od 16 do 256, co 16. Warianty zmiany podstawy
logarytmu:

a. Bezposrednio, logl10(x)/log10(p)
b. Z uzyciem wlasnej funkcji, Tools.Log(x, p)
c. Jak w b, ale funkcja zdefiniowana jako rozszerzajaca, x.Log(p)

Oblicza sume dwoch liczb podanych przez uzytkownika (nazwijmy je a i b), ale do
obliczenia sumy uzywa wtasnej funkcji Suma. Nastgpnie, nie zmieniajgc funkcji suma,
tylko sposdb jej wywotlania, obliczy¢:

a. 2a+3b
b. ab+7
c. Va+b?

d. a+b+ 1 (nie wolno uzywac ,,+!)

Oblicza 1 wyswietla pierwiastki réwnania kwadratowego (wersja uproszczona, bierzemy
pod uwagg tylko dwa przypadki, tj. delta wigksza lub rowna zero — dwa pierwiastki, delta
mniejsza niz zero — brak pierwiastkow). W obliczeniach uzy¢ wtasnych funkcji Suma,
Roéznica, Iloczyn i lloraz zamiast dwuargumentowych operatorow arytmetycznych

* Wykonuje zadania z punktu 4, ale wykorzystujac funkcje Suma, Roznica, Iloczyn i
Iloraz jako funkcje rozszerzajace

Znajduje pare liczb wzglednie pierwszych (NWD=1) z zakresu liczb podanych przez
uzytkownika — wariant stochastyczny (obie liczby sg losowane, do skutku). Do
wyznaczania NWD nalezy zdefiniowa¢ wtasng funkcje

* Wykonuje zadania z punktu 6, ale funkcja NWD jest rekurencyjna

* Znajduje 1 wyswietla wszystkie pary liczb wzglednie pierwszych z zakresu liczb
podanych przez uzytkownika

Wyswietla wartos$ci silni dla liczb z zakresu podanego przez uzytkownika. Do obliczenia
silni nalezy zdefiniowac funkcje

10. Wykonuje zadania z punktu 8, ale funkcja obliczajaca silni¢ jest rekurencyjna

11.

12.

13.

14.
15.

16.

17.

18.

19.
20.

21.

22.

* Wykonuje zadania z punktu 8, ale funkcja obliczajgca silni¢ jest rekurencyjna i uzyta

jako rozszerzajaca: n.Silnia()

Oblicza 1 wyswietla liczby Fibonacciego, z zakresu od 1 do 50. Do obliczania liczb ciggu
Fibonacciego zdefiniowa¢ funkcj¢ rekurencyjng

* Wykonuje zadania z punktu 10 i dodatkowo mierzy czas wykonania obliczen, dla
kazdego elementu ciggu oddzielnie

* Wykonuje zadania z punktu 10, ale wykorzystujac algorytm bez rekurencji.

Oblicza i wyswietla sume dwoch liczb podanych przez uzytkownika. Do obliczania sumy
nalezy uzy¢ delegacji. Warianty:

a. Delegat w postacji zdefiniowanej wczesniej funkcji Suma
b. Delegat w postaci wyrazenia lambda

* Oblicza i wyswietla sume oraz iloczyn dwoch liczb podanych przez uzytkownika. Do
obliczan nalezy uzy¢ delegacji i wyrazen lambda

Tworzy tablice o rozmiarze podanym przez uzytkownika, wypetnia ja wylosowanymi
liczbami 1 sortuje, uzywajac algorytmu gnoma. Do oddzielnych funkcji nalezy przenies¢
(w tej kolejnosci):

a. Tworzenie tablicy 1 wypetnianie jej losowymi liczbami
b. Drukowanie tablicy

c. Sprawdzenie, czy tablica jest posortowana

d. Sortowanie

Wykonuje zadania z punktu 17, ale uzywa funkcji do dekompozycji algorytmu — nalezy
zdefiniowac¢ jako prywatne funkcje odpowiedzialne za funkcjonalnie oddzielne czesci
algorytmu gnoma (uwaga na ref!)

a. Zamiang sgsiednich liczb miejscami

b. Wykonanie kroku w lewo, gdy gdy ti > ti+1

c. Wykonanie kroku w prawo, gdy ti <ti+1

Wykonuje zadania z punktu 17, ale funkcja uzyta jako rozszerzajaca: t.Gnom()

** Wykonuje zadania z punktu 17, ale sortuje wedtug innego kryterium (np. nieparzyste
przed parzystymi). Kryterium sortowania nalezy przekaza¢ w delegacji

Oblicza catke oznaczong wybranej prostej funkcji (np. funkcji liniowej lub kwadratowej),
w przedziale podanym przez uzytkownika

** Wykonuje zadania z punktu 21, ale funkcj¢ podcatkowa nalezy przekaza¢ w delegacji

