
Metodyki programowania
Istnieją trzy główne metodyki programowania:
• Programowanie strukturalne
• Programowanie proceduralne
• Programowanie obiektowe

Zastosowanie "wyższych" metodyk programowania wiąże się zawsze z dodatkowym
nakładem pracy, jednak przynosi znaczne korzyści – przy bardziej złożonych programach ten
nakład pracy bardzo szybko się zwraca

DRY (ang. don't repeat yourself)
• Dodatkowa korzyść z programowania proceduralnego oraz obiektowego to możliwość

wielokrotnego użycia kodu.
• Postulat DRY zaleca unikanie powtórzeń kodu (np. przez Ctrl-C, Ctrl-V), do czego

właśnie służą wyższe metodyki: fragment kodu można "zamknąć" w postaci
oddzielnej funkcji lub klasy i odwołać się do niego, zamiast go kopiować.

• Co ważne, DRY zmniejsza też liczbę błędów (zatem redukuje czas potrzebny na ich
poprawianie) – jeżeli funkcja zawiera błędy, to trzeba je poprawić tylko w jednym
miejscu, zaś raz opracowana i pozbawiona błędów funkcja już zawsze będzie działać
poprawnie

• DRY ułatwia również utrzymanie kodu – jeżeli jakiś aspekt programu trzeba ulepszyć
(np. zastosować szybszy algorytm), to wystarczy to zrobić w jednym miejscu

• Skrajne podejście DRY widać np. w języku Java, gdzie zaleca się stosowanie zasady
jeden plik = jedna klasa (publiczna) – w ten sposób każda klasa może łatwo być użyta
wielokrotnie

• Postulat DRY dotyczy też innych aspektów programowania, np. użycia narzędzi
programistycznych, kompilacji warunkowej, a nawet definiowania stałych

Geneza i historia programowania obiektowego
• Simula, 1967 r., Ole-Johan Dahl i Kristen Nygaard – rozwinięcie języka ALGOL,

klasy i obiekty (jako instancje klas); Dahl i Nygaard pracowali nad komputerowymi
modelami statków – duża liczba typów statków i ich parametrów (różnych dla różnych
typów) oraz relacji pomiędzy nimi była przyczyną problemów. Wpadli na pomysł, aby
dane statków każdego typu zgrupować w jeden programowy byt – obiekt

• Smalltalk, 1971 r., Xerox – wiele nowatorskich rozwiązań, m.in. dziedziczenie,
maszyna wirtualna, programy GUI (okienkowe), mysz

• C++, 1979 r., Bjarne Stroustrup – obiektowe rozwinięcie C (1973 r., Bell Labs),
wspiera paradygmaty proceduralny i obiektowy, umożliwia też wklejanie kodu języka
Asembler – ceniony za wydajność

• Java, 1991, Sun Microsystems – koncepcja Smalltalk, składnia C++ oraz kilka
innowacji – np. interfejsy;

• C#, 1998 r., Microsoft – nazwa sugeruje związek z C++, koncepcja bardziej zbliżona
do Java (maszyna wirtualna, język pośredni IL, zarządzanie pamięcią GC), wiele
cennych rozszerzeń, np. delegacje

Pojęcie i definicja klasy
Jeżeli przyjąć, że program komputerowy służy do rozwiązania jakiegoś problemu, to klasa
jest modelem elementu jego dziedziny.
• Definicja klasy obejmuje stan obiektu (wartości jego pól) oraz zachowanie

(działanie), przez definicje metod i właściwości
• Klasa jest typem dla obiektu, a obiekt danej klasy to jej instancja

Definicja klasy

[<[> Atrybuty<]>]
[<Modyfikatory>] class <Nazwa> [: <Klasa-bazowa>]
{
 // elementy składowe klasy
}

• Atrybuty, np. [Serializable] – metadane, dołączane przez kompilator do kodu klasy;
wg MS stanowią odpowiednik słów kluczowych (jak np. modyfikatory dostępu
private/public), ale dowolnie definiowanych; Mogą być wykorzystane na różne
sposoby – np. mogą stanowić wytyczne dla kompilatora JIT, mogą dodawać pewne
funkcjonalności

• Modyfikatory – dostępu (np. private/public), związane z dziedziczeniem (abstract,
sealed) oraz modyfikator static

• Klasa bazowa – klasa, po której aktualnie definiowana klasa dziedziczy wszystkie
elementy składowe; Domyślnie klasa object (System.Object)

Przykład

[Serializable]
public class FirstClass
{
 private Double value;

 public FirstClass(Double value)
 {
 this.value = value;
 }

 public Double Value
 {
 get;
 set;
 }
}

Modyfikatory dost ępu
• internal (domyślnie!) – klasa jest dostępna tylko w obrębie tego samego pakietu

(assembly = plik .dll lub .exe)
• public – klasa jest dostępna z dowolnego zestawu .NET
• protected – tylko klasy zagnieżdżone wewnątrz innej klasy – klasa jest dostępna tylko

dla klasy zawierającej i jej klas potomnych
• private – tylko klasy zagnieżdżone wewnątrz innej klasy – klasa jest dostępna tylko

dla klasy zawierającej
Pozostałe modyfikatory
• static – klasa zawiera wyłącznie metody statyczne, nie można utworzyć obiektu takiej

klasy
• abstract – klasa zawierająca metody abstrakcyjne; nie można utworzyć obiektu takiej

klasy, ale można zdefiniować jej klasy potomne
• sealed – nie może być przedmiotem dziedziczenia

Nazwa - zasady nieformalne:
• Klasy, pola, metody, stałe – konwencja Pacal,

nazwy klas i pól – rzeczowniki, metod – czasowniki:
• Interfejsy – Pascal poprzedzone literą "I"
• Nazwy powinny być znaczące:

Kod powinien być czytelny, kiedy do niego zajrzeć po kilku miesiącach albo dla
innego programisty (tzw. samodokumentujący się)

Klasa bazowa
Klasa bazowa to klasa, po których definiowana klasa dziedziczy elementy składowe, i/lub
interfejsy, które implementuje
• Klasa, która dziedziczy po innej klasie to klasa potomna, natomiast klasa, po której

dziedziczy klasa potomna to klasa bazowa
• Klasa może dziedziczyć po jednej klasie bazowej oraz implementować dowolnie wiele

interfejsów (klasa bazowa, o ile występuje, musi być wymieniona przez interfejsami)
• Domyślnie klasa dziedziczy po klasie System.Object

• Dziedziczenie klas i interfejsów ma inny sens:

– w przypadku klas jest to dosłowne dziedziczenie, klasa potomna otrzymuje
 wszystkie elementy kładowe klasy bazowej – można z nich korzystać tak samo,
 jakby były umieszczone w klasie potomnej
– w przypadku interfejsów dziedziczenie oznacza raczej zobowiązanie do
 zaimplementowania wszystkich metod interfejsu

Elementy składowe klasy
• Stała – niezmienna wartość (niemodyfikowalna zmienna);

Należy do klasy, nie do obiektów, podobnie jak metody statyczne
• Pole – zmienna należąca do obiektu, część stanu obiektu;

Zwykle pola są prywatne (dostępne wyłącznie dla metod obiektu)
• Właściwość – sposób udostępnienia stanu obiektu (prywatnego pola)

w kontrolowany sposób
• Metoda – funkcja związana z klasą, określająca działania, jakie może wykonać obiekt

klasy (nie dotyczy metod statycznych)

• Konstruktor – metoda wykonywana w trakcie tworzenia obiektu
• Destruktor – metoda wykonywana w trakcie "niszczenia" obiektu
• Operator – definicja działania operatora (np. +, *, &&, …)
• Zdarzenie – mechanizm informowania innych obiektów np. o zmianie stanu; w

praktyce zmienna typu delegacji
• Typ – zagnieżdżona definicja typu – klasy, interfejsu, delegacji, …

Elementy składowe klasy - modyfikatory dost ępu
• internal – element jest dostępny tylko w obrębie tego samego pakietu (assembly = plik

.dll lub .exe)
• public – element jest dostępny z dowolnego zestawu .NET
• protected – element jest dostępny tylko dla klasy zawierającej i jej klas potomnych
• private – (domyślnie) element jest dostępny tylko dla klasy zawierającej

Pola
Pola są zmiennymi należącym do obiektów lub klasy i reprezentują ich wewnętrzny stan; Z
zasady powinny być prywatne, natomiast do udostępniania stanu obiektu powinny służyć
właściwości

Dodatkowe modyfikatory dla pól
• static – pole statyczne, należy do klasy a nie obiektu
• readonly – pole tylko do odczytu (wartość możne nadać konstruktor)
• const – stała – wartość typu prostego, nadawana w czasie kompilacji

i później nie może być zmieniona; należy do klasy (≈ static readonly)

class Sample
{
 public const Double PI = 3.1415;
 public static readonly DateTime Start = DateTime.Now;
 private Int32 length;
 // …
}

Właściwo ści
• Właściwości służą do kontrolowanego dostępu do stanu obiektu – umożliwiają odczyt

i zmianę stanu (tj. wartości prywatnych pól)
• Właściwość składa się z dwóch metod: accesor (odczyt pola) oraz mutator (zmiana

wartości pola); w językach C++/Java służą do tego oddzielne metody (w slangu Java
nazywane getter i setter), natomiast w C# połączone w jedną konstrukcję składniową

• Właściwość składa się z sekcji get i/lub set;
Obie sekcje są w pewnym sensie metodami – można dla nich używać modyfikatorów
takich jak dla metod (np. virtual, override)

• Używanie właściwości nie oznacza spowolnienia programu – kompilator JIT może

zastępować wywołania prostych właściwości kodem sekcji get lub set

Definicja wła ściwo ści:

<modyfikator> <typ> Nazwa
{
 [<modyfikator>] getgetgetget
 {
 // dowolny kod
 returnreturnreturnreturn <wartość-właściwości>
 }
 [<modyfikator>] setsetsetset
 {
 // dowolny kod
 // wartość przypisywana właściwości
 // jest dostępna jako valuevaluevaluevalue
 }
}

Przykład

privateprivateprivateprivate Double promień;

publicpublicpublicpublic Double Promień
{
 getgetgetget
 {
 returnreturnreturnreturn promień;
 }
 setsetsetset
 {
 ifififif (valuevaluevaluevalue<0)
 throwthrowthrowthrow newnewnewnew ArgumentException();
 promień = valuevaluevaluevalue;
}

publicpublicpublicpublic Double Powierzchnia
{
 getgetgetget
 {
 returnreturnreturnreturn Math.PI * promień * promień;
 }
}

Metody
• Odpowiadają za wykonywanie działań, które definiują zachowanie się obiektów

(można powiedzieć że definiują polecenia, które można wydawać obiektom)
• Mogą być przeciążone

Przeciążenie metody to definiowanie wielu metod o tej samej nazwie, ale różniących
się liczbą i/lub typami argumentów (do przeciążenia nie wystarczy inna nazwa
argumentu lub inny typ rezultatu)

• Odpowiadają za polimorfizm (modyfikatory virtual i override)

Metody – dodatkowe modyfikatory
• static – metody statyczne są częścią klasy, nie obiektu
• abstract – metoda abstrakcyjna może pojawić się tylko w klasie abstrakcyjnej; zawiera

samą metryczkę (bez ciała metody)

• virtual – metoda może być nadpisana w klasie potomnej
• override – metoda klasy potomnej, nadpisująca metodę odziedziczoną

• new – metoda zastępująca metodę nie-wirtualną w klasie potomnej
• sealed – metoda finalna, nie może być nadpisana
• extern – metoda implementowana zewnętrznie

("pobierana" z DLL dyrektywą DLLImport)

Definicja metody:

<modyfikator> <typ-reultatu> NazwaNazwaNazwaNazwa (<listalistalistalista----parametrówparametrówparametrówparametrów>)
{{{{
 // ciało metody – dowolny kod;
 // jeżeli typ rezultatu jest inny, niż void,
 // to powinien zawierać instrukcję zwracania
 // rezultatu:
 returnreturnreturnreturn <wyrażenie>;
}}}}

Przykład

privateprivateprivateprivate Double radius;

publicpublicpublicpublic voidvoidvoidvoid SetRadius (Double radius)
{
 thisthisthisthis.radius = radius;
}

publicpublicpublicpublic Double GetArea ()
{
 returnreturnreturnreturn Math.Pi * radius * radius;
}

Metody maja nieograniczony dostęp do wszystkich pól, właściwości i metod klasy oraz jej
klas bazowych (oprócz private klasy bazowej); Dostęp do własnych elementów jest BEZ
operatora dostępu ".", ale można go użyć ze słowem kluczowym this (= bieżący obiekt),
np. kiedy występuje konflikt nazw pomiędzy polem a argumentem

Polimorfizm
Obiekt klasy potomnej można zawsze przypisać do zmiennej typu klasy bazowej – np. w C#
wszystkie klasy dziedziczą po klasie obiect:

StreamWriter sw = new StreamWriter(path);
Object o = sw;

Zmienna klasy bazowej udostępnia tylko te elementy obiektu, które zostały zdefiniowane w
klasie bazowej

Polimorfizm jest implementowany przez metody wirtualne – modyfikator virtual w klasie
bazowej i override w klasach potomnych. W sytuacji jak wyżej, wywołanie metody
polimorficznej spowoduje wykonanie metody zdefiniowanej w klasie potomnej, a nie
bazowej;

W C# wszystkie klasy mają metodę ToString() – wirtualną, zdefiniowaną w klasie
System.Obiect; Jeżeli ta metoda zostanie nadpisana w klasie potomnej, to nawet po
przypisaniu referencji obiektu do zmiennej typu object, zostanie wykonana metoda ToString
klasy potomnej

DateTime dt = DateTime.Now;
obiect o = dt;

String s = o.ToSring(); // = DateTime.ToString()

Warto zauważyć, że np. dzięki temu Console.WriteLine akceptuje jako argumenty obiekty
dowolnej klasy, również nieznanej w momencie tworzenia .NET – używa ich metody
ToString, a dzięki polimorfizmowi wykonywana jest metoda ToString klas potomnych

Inicjacja obiektów i konstruktory
• Pola niezainicjowane otrzymują wartość domyślną – zależnie od typu jest to 0, 0.0,

false lub wskazanie puste (null)
• Pola można inicjować razem z ich deklaracją (dla stałych jest to obowiązkowe) albo w

konstruktorach

• Konstruktor jest specjalną metodą, używaną wyłącznie do tworzenia obiektów – nie

można go wywołać jawnie, natomiast jest wykowywany zawsze podczas tworzenia
obiektu operatorem new

• Kompilator C# wyposaża klasę w domyślny konstruktor bezargumentowy, ale tylko
kiedy klasa nie ma innych konstruktorów

• Konstruktor może być przeciążony
• Konstruktory nie są dziedziczone;

konstruktor klasy potomnej może "wywołać" konstruktor klasy bazowej

Przykład

class Sample
{
 private Int32 n1 = 13;
 private Int32 n2; // tj. n2 = 0

 public Sample (Int32 n2)
 {
 this.n2 = n2;
 }
}

Sample s1 = new Sample (13); // s1.n2 = 13
Sample s2 = new Sample(); // błąd!
Sample s3 = new Sample(7, 77); // błąd!

Destruktory
• Destruktor jest specjalną metodą, wywoływaną niejawnie przez GC

w momencie "niszczenia" obiektu
• Klasy korzystające wyłącznie z zasobów .NET (zarządzanych)

nie wymagają destruktora – GC wykonuje zwalnia zasoby wykorzystywane przez
obiekt, zwłaszcza pamięć

• Klasy korzystające z zasobów spoza .NET (niezarządzanych),
powinny mieć destruktor, którego zadaniem jest zwolnienie zasobów

• Destruktor musi być bezargumentowy i nie może być przeciążony

class Sample
{
 // …
 public ~Sample()
 {
 // zwolnienie zasobów niezarządzanych
 }
}

Struktury (struct)
• Służą do definiowania typów wartościowych

(klasy – typy referencyjne)
• Mają składnie podobną do klas, z kilkoma różnicami:

– Domyślny modyfikator elementów: public
– Nie można jawnie definiować konstruktora bezargumentowego,
 konstruktor taki jest zawsze dostępny
– Nie może być dziedziczona, ale może implementować interfejs

• Struktury należy stosować zamiast klas, kiedy w sposób naturalny reprezentują
pojedynczą wartość – np. data/czas, temperatura itp.
Struktury – ze względu na wydajność – powinny zajmować niewiele pamięci
(MS: do 16 bajtów), ponieważ są tworzone na stosie, a nie na stercie jak obiekty klas

Zadania

Proszę napisać program, który…

1. Tworzy dwie instancje struktury Temperature, wyświetla i modyfikuje wartość

publicznego pola Celsius tej struktury oraz przypisuje jedną strukturę do drugiej;

Struktura Temperature powinna zawierać wyłącznie jedno publiczne pole Celsius

2. Wykonuje zadania z punktu 1, ale po zmianie struktury na klasę
Klasa Temperature powinna zawierać wyłącznie jedno publiczne pole Celsius

3. Tworzy dwa obiekty klasy Temperature, wyświetla i modyfikuje wartość publicznej
właściwości Celsius obiektów oraz kopiuje wartość właściwości między obiektami

Klasa Temperature powinna zawierać prywatne pole celsius oraz powiązaną z nim
publiczną właściwość Celsius, poprzez którą można odczytać lub zmienić wartość pola

4. Wykonuje zadania z punktu 3; dodatkowo należy użyć pracy krokowej i sprawdzić kiedy
jest wykonywana sekcja set a kiedy sekcja get właściwości

5. Wykonuje interaktywnie polecenia modyfikujące i odczytujące właściwość Celsius
obiektu klasy Temperature; Należy uwzględnić polecenia „get” – wyświetlenie wartości
temperatury oraz „set” – wprowadzenie z klawiatury nowej wartości temperatury;

Klasa Temperature powinna zawierać prywatne pole celsius oraz powiązaną z nim
publiczną właściwość Celsius, poprzez którą można odczytać lub zmienić wartość pola.
W przypadku próby przypisania nieprawidłowej wartości temperatury (poniżej -273 C)
sekcja set powinna rzucić wyjątek, np. ArgumentOutOfRangeException, który powinien
być obsłużony w głównej pętli programu

6. Wykonuje zadania z punktu 3, ale dodatkowo obsługuje polecenia „getf” i „setf”, które
z obiektu tej samej klasy odczytują i zapisują wartość temperatury w skali Fahrenheita;

Klasa Temperature powinna zawierać uzupełniona o właściwość Fahrenheit, ale ponieważ
wewnętrzny stan obiektu (pole celsius) jest w skali Celsjusza, to właściwość Fahrenheit
powinna przeliczać temperaturę z/na skalę Celsjusza

7. Wykonuje zadania z punktu 6, ale dodatkowo definiuje konstruktor dla klasy Temperature

8. Wykonuje zadania z punktu 7, ale nadpisuje metodę ToString() klasy Temperature,
odziedziczoną z klasy System.Object;

Metoda ToString() powinna zwracać wartość typu String, reprezentującą wewnętrzny
stan obiektu (np. "22,0 ºC"), natomiast wydruk powinien następić w głównej pętli
programu; Metoda ToString() nie może sama drukować czegokolwiek,

9. Tworzy listę obiektów klasy Temperature, do której użytkownik może dodawać nowe
obiekty poleceniem „add” oraz wyświetlać wszystkie zapisane na liście obiekty
poleceniem „view”;

Do utworzenia listy należy użyć klasy uniwersalnej List<>, zaś do dodawania do listy
obiektów metody Add() tej klasy, np. w taki sposób:

 List<Temperature> LogMeteo = new List<Temperature>();
 LogMeteo.Add(t);

Użyć pracy krokowej do zlokalizowania błędu w programie, poprawić błąd

