C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1 // FaceRec9.cpp : Defines the entry point for the application.
//

#include "framework.h"

#include "omp.h"

#include "math.h"

#include "fftw3.h"

#include "new.h"

#include <list>

#include <chrono>

#include <thread>

12 #include <opencv2/core/core.hpp>

13 #include "opencv2/imgcodecs/imgcodecs.hpp"
14 #include <opencv2/highgui/highgui.hpp>

15 #include <opencv2/imgproc/imgproc.hpp>

16 #include <iostream>

17 #include "GetFreq_REC.h"

18 #include "FaceRec9.h"

19

20 using namespace cv;

21 using namespace std;

22

23 typedef unsigned char byte;

24

25 #define MAX_LOADSTRING 100

26

27 byte* bytes, * bytesl, * bytes3, * bytesX;
28

29 char POM[200], POM1[200], POM2[200];

30 int selClan;

31 int N1 = 768, N2 = 1366, N = 768;

32 int PROLAZ, PROLAZ1l, pprolaz, povrat = 0, KAMERA = 1;
33 int brUz, brUzObj;

Voo Jou EWN

=
(O

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

34 int brObjects = 7, brFreq = 1014; // brFreq_REC = 338%3 (RGB)

35 int poz, pozl, cancel;

36 LRESULT checkBoxes[2];

37 int XX, VYY;

38 static HWND hwndButton;

39

40 double largest, largestl;

41 double S_R[768]1[1366]1, S_G[768]1[1366]1, S_B[7681[1366];

42

43 double** largX;

g

45 double**x A_R, ** A_G, **x A_B;

ue

47 doublex** R_REC;

us

49 GetFreq_REC** REC;

50

51 char** names;

52

53 FILE* stream,

54

55 VideoCapture cap;

56

57 // hhkkkhkkhkkhkkkhkhkhkhkhhhhkhkhkhkhkkhkhkhkhkhhhhhhhkhkhkhkhkhkhkhhhhhhkhkhhkhhhkhkhkhhhhhhhkhkkhkhkhhhhhhhkhkhkhkkhhkhkhkhkhhhk
58 [/ ixkkx*k Get Image functions E L T T T T T T T
59 // kkkkhkhkkkkhkkhhkkkhkkhhhkkkhkhhhkkkhkhhhkkhkkhhhhkkhkhhhkhkkhhhkkhhhhkkhhhhhkkhhhhkhkhhhkkhhhhkkkhkhhhkkkhhhhkkkhhkkkhhkk

60

61 // kxkxk Recognition function sxkkkkkkkkkkkkkkkkkhhhkrrkhkrkrkrrhhhkkkkkkk
62

63 void GetImage_FACEREC(CHWND hWnd) {

6u

65 namedWindow("FaceRecognition", WINDOW_NORMAL);

66 setWindowProperty("FaceRecognition", WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

67

68

69 int i, j;

70

71 Mat frame = Mat(768, 1366, CV_8UC3);

72

73 while (1) {

T4

75 Mat temp;

76

77 bool bSuccess = cap.read(temp); // read new frame from video
78

79 if (!bSuccess) // if not success, break loop

80 1

81 destroyAllWindows();

82 MessageBox(hwnd, TEXT("Frame not captured !"), TEXT("FaceRec9 -> Message:"), MB_OK);
83 break;

8u ¥

85

86 // *x*% cut frame from large temp image

87

88 1

89 Rect ROI(U69, 26U, 1366, 768); // temp image: 1296x2304 pix
920 temp(ROI).copyTo(frame); // frame image: 768x1366 pix
91 }

92

93 // **% put it to the buffer for processing in recognition subroutine
oy

95 std: :memcpy(bytes, frame.data, 3147264 * sizeof(byte));

96

97 // *** draw 768x768 pix rectangle in the frame

98

99 rectangle(frame, Point(299, 0), Point(1067, 768), Scalar(63, 191, 127, 255), 11, LINE_AA, 0);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

100

101 int R = 0; int G = 255; int B = 0;

102

103 // *** draw circles arround eyes

io4

105 RotatedRect rRect = RotatedRect(Point2f(491, 216), Size2+(192, 192), 0); // uo9l
106 ellipse(frame, rRect, Scalar(B, G, R, 255), 1, LINE_AA);
107

108 rRect = RotatedRect(Point2f(491, 216), Size2f(96, 96), 0);
109 ellipse(frame, rRect, Scalar(B, G, R, 255), 1, LINE_AA);
110

111 rRect = RotatedRect(Point2f(875, 216), Size2f(192, 192), 0); // 875
112 ellipse(frame, rRect, Scalar(B, G, R, 255), 1, LINE_AA);
113

114 rRect = RotatedRect(Point2f(875, 216), Size2f(96, 96), 0);
115 ellipse(frame, rRect, Scalar(B, G, R, 255), 1, LINE_AA);
116

117 if (largest > 0.5) {

118 rectangle(frame, Point(18, u458), Point(118, 558), Scalar(127, 127, 127, 255), FILLED, LINE_AA, 0);
119

120 Mat frame_REC = Mat(96, 96, CV_8UC3, bytesl).clone();
121

122 i

123 Rect ROI(20, 460, 96, 96);

124 frame_REC.copyTo(frame(ROI));

125 ¥

126 ¥

127

128 if (largest > 0.5) {

129 G=0; R=255;

130 }

131

132 // **x draw circles with changed colours

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

154
155
156
157

158

159

160
l6l

rRect = RotatedRect(Point2f(u491, 216), Size2f(192, 192), 0); // u91l
ellipse(frame, rRect, Scalar(B, G, R, 255), 1, LINE_AA);

rRect = RotatedRect(Point2f(491, 216), Size2f(13, 13), 0);
ellipse(frame, rRect, Scalar(B, G, R, 255), FILLED, LINE_AA);

rRect = RotatedRect(Point2f(875, 216), Size2f(192, 192), 0); // 875
ellipse(frame, rRect, Scalar(B, G, R, 255), 1, LINE_AA);

rRect = RotatedRect(Point2f(875, 216), Size2f(13, 13), 0);
ellipse(frame, rRect, Scalar(B, G, R, 255), FILLED, LINE_AA);

// *xx draw names and probabilities for detected face

i = poz / brUzObj;
sprintf_s(POM, 200, "%s", names[i]);
j = 6u40 - ((int)strlen(names[i]) / 2 = u@) + 20;
if (largest > 0.5)
putText(frame, POM, Point2f((float)j, 100), FONT_HERSHEY_TRIPLEX, 2, Scalar(®, ©, 255, 255), 1,
LINE_AA, false);
else putText(frame, POM, Point2f((float)j, 100), FONT_HERSHEY_TRIPLEX, 2, Scalar(255, ©, 0, 255), 1,
LINE_AA, false);

sprintf_s(POM, 200, "imageNr = %d", poz + 1);
if (largest > 0.5)
putText(frame, POM, Point2f(430, 680), FONT_HERSHEY_COMPLEX_SMALL, 1, Scalar(®, ©, 255, 255), 1,
LINE_AA, false);
else putText(frame, POM, Point2f(430, 680), FONT_HERSHEY_COMPLEX_SMALL, 1, Scalar(255, @, 0, 255), 1,
LINE_AA, false);

sprintf_s(POM, 200, "prob = %.5f", largest);
if (largest > 0.5)

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

162 putText(frame, POM, Point2f(430, 700), FONT_HERSHEY_COMPLEX_SMALL, 1, Scalar(®, O, 255, 255), 1,
LINE_AA, false);

163 else putText(frame, POM, Point2f(430, 700), FONT_HERSHEY_COMPLEX_SMALL, 1, Scalar(255, 0, 0, 255), 1,
LINE_AA, false);

164

165 imshow("FaceRecognition", frame);

166

167 if ((waitKey(1) == 27) || (KAMERA == 1)) //wait for 'esc' key press for lms. If 'esc' key is pressed,
break loop

168 i

169 destroyAllWindows();

170 break;

171 }

172 }

173

174 KAMERA = 1;

175 '}

176

177 // **x%%x Recognition with Face Detection #¥kxskkkskskikikikk

178

179 void GetImage_FACEDET_RECCHWND hund) {

180

181 int i, j;

182

183 namedWindow("FaceDetRec", WINDOW_NORMAL);

184 moveWindow("FaceDetRec", XX, YY);

185 setWindowProperty("FaceDetRec", WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);

186

187 Mat frame = Mat(768, 1366, CV_8UC3);

188

189 while (1) {

190

191 Mat temp;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

192

193 bool bSuccess = cap.read(temp); // read new frame from video

194

195 if (!bSuccess) //if not success, break loop

196 {

197 destroyAllWindows();

198 MessageBox(hWnd, TEXT("Frame not captured !"), TEXT("FaceRec9 -> Message:"), MB_OK);
199 break;

200 }

201

202 // **%x cut 768x1366 pix frame from 230U4x1296 pix video image
203

204 {

205 Rect ROI(469, 264, 1366, 768); // temp image: (2364, 1296)
206 temp(ROI).copyTo(frame);

207 }

208

209 // *** buffer it

210

211 std: :memcpy(bytes, frame.data, 3147264 * sizeof(byte));

212

213 // *** draw rectangles

214

215 rectangle(frame, Point(299, 0), Point(1067, 768), Scalar(63, 127, 191, 255), 11, LINE_AA, 0);
216

217 // **% if above threashold show image from detection process
218

219 if (largest > 0.2) {

220

221 rectangle(frame, Point(48, 248), Point(104, 304), Scalar(127, 127, 127, 255), FILLED, LINE_AA, 0);
222

223 Mat frame_REC = Mat(52, 52, CV_8UC3, bytesl).clone();

224

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

225 {

226 Rect ROI(50, 250, 52, 52);

227 frame_REC.copyTo(frame(ROI));

228 }

229

230 Mat framel_REC = Mat(96, 96, CV_8UC3, bytes3).clone();

231

232 rectangle(frame, Point(118, u4u43), Point(218, 543), Scalar(127, 127, 127, 255), FILLED, LINE_AA, 0);

233

234 i

235 Rect ROI(120, 445, 96, 96);

236 framel_REC.copyTo(frame(ROI));

237 }

238

239 putText(frame, "DB Image:", Point2f(120, 435), FONT_HERSHEY_PLAIN, 1, Scalar(255, 0, ©, 255), 1,
LINE_AA, false);

20 }

241

242 // **x if above threashold show image from recognition process

243

2uy if (largestl > 0.5) {

245

2U6 Mat framel_REC = Mat(96, 96, CV_8UC3, bytes3).clone();

247

2u8 rectangle(frame, Point(118, u443), Point(218, 543), Scalar(127, 127, 127, 255), FILLED, LINE_AA, 0);

249

250 {

251 Rect ROI(120, 445, 96, 96);

252 framel_REC.copyTo(frame(ROI));

253 }

254

255 putText(frame, "DB Image:", Point2f(120, 435), FONT_HERSHEY_PLAIN, 1, Scalar(®, 0, 255, 255), 1,

LINE_AA, false);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

256 }

257

258 // *** detection pass nr. counter

259

260 sprintf_s(POM, 200, "Pass: %d", PROLAZ);

261 putText(frame, POM, Point2f(20, 150), FONT_HERSHEY_PLAIN, 1.5, Scalar(®, @, 255, 255), 1, LINE_AA, false);

262

263 sprintf_s(POM, 200, "PassLocal: %d", PROLAZ1);

261 putText(frame, POM, Point2f(50, 220), FONT_HERSHEY_PLAIN, 1, Scalar(®, ©, 255, 255), 1, LINE_AA, false);

265

266 // **% display name, probability and image nr. of recognized face

267

268 i = pozl / brUzObj;

269 sprintf_s(POM, 200, "%s", names[i]);

270 j = 640 - ((int)strlen(names[i]) / 2 * u4@) + 20;

271 if (largestl > 0.5)

272 putText(frame, POM, Point2f((float)j, 100), FONT_HERSHEY_TRIPLEX, 2, Scalar(@, 0, 255, 255), 1,

LINE_AA, false);

273 else putText(frame, POM, Point2f((float)j, 100), FONT_HERSHEY_TRIPLEX, 2, Scalar(255, 0, 0, 255), 1,
LINE_AA, false);

274

275 sprintf_s(POM, 200, "Face pattern image:");

276 putText(frame, POM, Point2f(20, 190), FONT_HERSHEY_PLAIN, 1, Scalar(®, 0, 255, 255), 1, LINE_AA, false);

277

2178 sprintf_s(POM, 200, "imageNr = %d", pozl + 1);

279 if (largestl > 0.5)

280 putText(frame, POM, Point2f(530, 680), FONT_HERSHEY_COMPLEX_SMALL, 1, Scalar(®, O, 255, 255), 1,

LINE_AA, false);

281 else putText(frame, POM, Point2f(530, 680), FONT_HERSHEY_COMPLEX_SMALL, 1, Scalar(255, 0, ©, 255), 1,
LINE_AA, false);

282

283 sprintf_s(POM, 200, "prob = %.5f", largestl);

284 if (largestl > 0.5)

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 10
285 putText(frame, POM, Point2f(530, 700), FONT_HERSHEY_COMPLEX_SMALL, 1, Scalar(®, O, 255, 255), 1, +
LINE_AA, false);
286 else putText(frame, POM, Point2f(530, 700), FONT_HERSHEY_COMPLEX_SMALL, 1, Scalar(255, 0, @, 255), 1, ?
LINE_AA, false);
287
288 imshow("FaceDetRec", frame);
289
290 if ((waitKey(1) == 27) || (KAMERA == 1)) //wait for 'esc' key press for lms. If 'esc' key is pressed, ?
break loop
291 i
292 destroyAllWindows();
293 break;
294 }
295
296 3
297
298 KAMERA = 1;
299 }
300
301 // =*xx%* Database Creation *%xxx*
302
303 void GetImage_RecogDB(HWND hund) {
304
305 namedWindow("RecognitionDB", WINDOW_NORMAL);
306 setWindowProperty("RecognitionDB", WND_PROP_FULLSCREEN, WINDOW_FULLSCREEN);
307
308 int R = 0; int G = 0; int B = 255;
309 Mat frame = Mat(768, 1366, CV_8UC3);
310
311 while (1) {
312
313 Mat temp;

314

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

315 bool bSuccess = cap.read(temp); // read a new frame from video
316

317 if (!bSuccess) //if not success, break loop

318 {

319 destroyAllWindows();

320 MessageBox(hwind, TEXT("Frame not captured !"), TEXT("FaceRec9 -> Message:"), MB_OK);
321 break;

322 }

323

324 i

325 Rect ROI(469, 264, 1366, 768); // temp image: (2304x1296)
326 temp(ROI).copyTo(frame);

327 }

328

329 std: :memcpy(bytes, frame.data, 3147264 * sizeof(byte)); // 1366x768x3
330

331 if (PROLAZ == 50) {

332 R = 255; B = 0;

333 ¥

334

335 if (PROLAZ == 350) {

336 G = 255; R = 0;

337 }

338

339 RotatedRect rRect = RotatedRect(Point2f(491, 216), Size2f(192, 192), 0); // 2u0
340 ellipse(frame, rRect, Scalar(B, G, R, 255), 1, LINE_AA);

341

342 rRect = RotatedRect(Point2f(875, 216), Size2f(192, 192), 0);
343 ellipse(frame, rRect, Scalar(B, G, R, 255), 1, LINE_AA);

344

345 rRect = RotatedRect(Point2f(u491, 216), Size2f(15, 15), 0);

3u6 ellipse(frame, rRect, Scalar(B, G, R, 255), FILLED, LINE_AA);

347

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

348 rRect = RotatedRect(Point2f(875, 216), Size2f(15, 15), 0);

349 ellipse(frame, rRect, Scalar(B, G, R, 255), FILLED, LINE_AA);

350

351 imshow("RecognitionDB", frame);

352

353 if ((waitKey(1) == 27) || (KAMERA == 1)) //wait for 'esc' key press for 1lms. If 'esc' key is pressed,
break loop

354 {

355 destroyAllWindows();

356 break;

357 ¥

358 }

359 KAMERA = 1;

360 }

361

362 [/ kkkkkkkkkkkkkkkkkkkkhkkkkhkkkhkkkhhkkkkhkkkkk
363 // k*x% DYNAMIC FIELDS e vk e e de e ok e e e e ok e e e ek e ek

36U [/ kkkkkkkkkkkkkkkkkkkkkkkrkhkkkkkkkkrkkkkrkrkrk

365

366 int CreateDynamicFields() {

367

368 char ch;

369 int i, j, Kk;

370

371 if (fopen_s(&stream, ".\\brUzoraka.txt", "r") == 0) {
372

373 i=o0;

374 while ((ch = fgetc(stream)) != ', ')
375 POM[i++] = ch;

376 POM[i] = '\O';

377 brUz = atoi(POM);

378

379 i=0;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

380 while ((ch = fgetc(stream)) != '#')

381 POM[i++] = ch;

382 POM[i] = "\0';

383 brUzObj = atoi(POM);

384 fclose(strean);

385 }

386 else return (0);

387

388 if (fopen_s(&stream, ".\\monitors.dat", "r") == 0) {
389 fread(checkBoxes, sizeof(LRESULT), (2), stream);
390 fclose(stream);

391

392 if (checkBoxes[1] == BST_CHECKED) {

393 XX = GetSystemMetrics(SM_CXSCREEN);
394 YY = -GetSystemMetrics(SM_CYSCREEN);
395 }

396 else {

397 XX = 0;

398 YY = 0;

399 }

4oo }

4ol else return (0);

4oz

403 REC = new GetFreq_REC * [brObjects];

qou

4es5 if (brUz == 0) return (1);

Hoe

4o7 R_REC = new doublex** [brObjects];

4os

4e9 for (int i = 0; i < brObjects; i++) {

41e R_REC[i] = new double* [bruz];

411 for (int j = 0; j < brUz; j++)
412 R_REC[i][j] = new double[brFreq];

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

413 }

4ig

415 largX = new double* [brObjects];
416 for (i = 0; i < brObjects; i++)
417 largX[i] = new double[bruz];
418

419 names = new char* [brUz / brUzObj];
420

421 if ((fopen_s(&stream, ".\\names.txt", "r") == 0) && (stream != NULL)) {
422

423 j=0; ch="9",;

u24 while (ch != '#') {

425

426 i=0;

027 while ((Cch = fgetc(stream)) != '\n') && (ch != '#')) {
428 POM[i++] = ch;

429 }

130 POM[i++] = '\0';

431

432 if (ch == '#') break;

433

43y names[j] = new char[i];

435

U36 for (k = 0; k < i; k++) names[jl[k] = POM[K];
437

u3s o+

u39 ¥

44qe

gua fclose(strean);

uu2 }

43 else return(0);

LT

uus return(l);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

uue }

g7

048 void DestroyDynamicFields() {

449

450 int i, j;

451

452 if (brUz == 0) {

453 delete[] REC;

4sy return;

u55 }

456

457 for (i = 0; i < brUz / brUzObj; i++)
458 delete[] names[i];

459 delete[] names;

Le60

U6l for (i = 0; i < brObjects; i++) {
162 for (j = 0; j < brUz; j++)
463 delete[] R_REC[i][j];
yeu delete[] R_REC[il;

u65 }

466 delete[] R_REC;

467

u68 for (i = 0; i < brObjects; i++)
169 delete[] largX[i];

470 delete[] largX;

471

472 delete[] REC;

u73 '}

474

475 int SpremiPodatke(int Sw) {

476

u77 int i;

478

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

479 if ((fopen_s(&stream, ".\\brUzoraka.txt", "w+t") == 0) && (stream != NULL)) {
480 fprintf_s(stream, "%d,%d#", brUz, brUzObj);

ug81 fclose(stream);

u82 }

483 else return(0);

4y

U85 if ((fopen_s(&stream, ".\\names.txt", "w+t") == 0) && (stream != NULL)) {
u86 if (Sw == 0) {

u87 for (i = 0; i < (brUz - brUzObj) / brUzObj; i++)
488 fprintf_s(stream, "%s\n", names[i]);

489 fprintf_s(stream, "%d. %s\n", i + 1, POM);

490 }

491 else {

492 for (i = 0; i < (brUz) / brUzObj; i++)

493 fprintf_s(stream, "%s\n", names[i]);

qoy }

495 fprintf_s(stream, "#");

196 fclose(stream);

497 }

498 else return(0);

499 return(l);

500 }

501

502 // hhkkkhkkhkhkhkhkhkhhkhkhhkhkhhkhkhhhkhhkhkhhhkhkhhkhhhkhhkhhkrhkhkkxkx
503 // **x reduce x time x image to y time y image = **x*

5@’4 // khkkkhkhkkhhkkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhhkhhkhkhhhkhhkhhkhkhkhkhkhkhkhkkk

505

506 void Reduce_Image_FFTW(int x, int v) {

507

508 int i, j;

509

510 double* x_R = (double*)fftw_malloc(sizeof(double) * (size_t)x * (size_t)x);

511 for (i = 0; i < x; i++)

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

17

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

for (j = 0; j < x; j++)
x_R[i * x + j] = S_R[il[jI;
fftw_complexx y_R = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * (size_t)x * ((size_t)x / 2 + 1));
fftw_plan plan_R = fftw_plan_dft_r2c_2d(x, x, x_R, y_R, FFTW_ESTIMATE);

double* x_G = (doublex*)fftw_malloc(sizeof(double) * x * x);
for (i = 0; i < x; i++)
for (j = 0; j < x; j++)
x_G[i * x + j] = S_G[il[j];
fftw_complex* y_G = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * (size_t)x * ((size_t)x / 2 + 1));
fftw_plan plan_G = fftw_plan_dft_r2c_2d(x, x, x_G, y_G, FFTW_ESTIMATE);

double* x_B = (double*)fftw_malloc(sizeof(double) * (size_t)x * (size_t)x);
for (i = 0; i < x; i++)
for (j = 0; j < x; j++)
x_B[i *» x + j1 = S_B[il[j];
fftw_complex* y_B = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * (size_t)x * ((size_t)x / 2 + 1));
fftw_plan plan_B = fftw_plan_dft_r2c_2d(x, x, x_B, y_B, FFTW_ESTIMATE);

fftw_execute(plan_R);
fftw_execute(plan_G);
fftw_execute(plan_B);

for (i =0; i<y / 2; i++)
for (j =0; j<vy/2; j+) {

y R[i* Cy / 2+ 1) + jl[0] =y R[i* (x / 2+ 1) + jl[e];
y_R[i* Cy / 2+ 1)+ jl[1] =y R[i » (x / 2 + 1) + jl[1];
y_G[i* Cy / 2+ 1) + jI[O] = y_G[i * (x / 2+ 1) + jl[e];
y G[i* Cy / 2+ 1)+ 31[1] = y_G[i » (x / 2 + 1) + jl[1];
y B[i* Cy / 2+ 1)+ jl[e] =y B[i* (x/ 2+ 1) + jl[o];
y B[i*x Cy / 2+ 1)+ jl[1] =y B[i » (x / 2+ 1) + jl[1];

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

18

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

}

for (i =y / 2; i <y; i++)

for (j =0; j<vy/2; jH) {
y_R[i * Cy / 2+ 1) + jl[e] = y_RI(1 +
y_R[i* Cy / 2+ 1) + jI[1] = y_R[(4 +
y_G[i * Cy / 2+ 1) + jl[e] = y_G[(i +
y_G[i* (v / 2+ 1) + jl[1] = y_G[(1 +
y B[i* Cy / 2+ 1) + jl[e] = y_B[(d +
y B[i * (v / 2+ 1) + jI[1] = y_B[(i +

}

fftw_plan planl_R = fftw_plan_dft_c2r_2d(y, v,
fftw_plan planl_G = fftw_plan_dft_c2r_2d(y, v,
fftw_plan planl_B = fftw_plan_dft_c2r_2d(y, v,

fftw_execute(planl_R);
fftw_execute(planl_G);
fftw_execute(planli_B);

for (i = 0; i < y; i++)
for (j =0; j<vy; j++) {

(x=y)) *» (x/2+1)+
(x=y)) *» (x/2+1)+
(x=y)) » (x/2+1)+
(x =y)) » (x/2+1)+
(x=y)) *» (x/2+1)+
(x=y)) *» (x/2+1)+

y_R, X_R, FFTW_ESTIMATE);
y_G, x_G, FFTW_ESTIMATE);
y_B, x_B, FFTW_ESTIMATE);

S_R[il[j] = x_R[i * v + j]1 / ((size_t)x * x);

if (S_R[il[j] < @) S_R[il[j] = o;

else if (S_R[il[j]1 > 255) S_RL[il[j] = 255;

S_G[il[j] = x_G[i *» v + j1 / ((size_tdx * x);

if (S_G[il[j] < @) S_G[il[j] = o;

else if (S_G[il[j]1 > 255) S_G[i][jl = 255;

S_B[il[j] = x_B[i *» v + j]1 / ((size_t)x * x);

jllel;
jI1]1;

jllel;
jI1];

jllel;
jl1l1];

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

578 if (S_B[il[j] < ©) s_B[il[j] = o;

579 else if (S_B[il[j] > 255) S_B[il[j] = 255;
580 ¥

581

582 fftw_free(x_R); fftw_free(x_G); fftw_free(x_B);
583 fftw_free(y_R); fftw_free(y_G); fftw_free(y_B);
58U fftw_destroy_plan(plan_R); fftw_destroy_plan(plan_G); fftw_destroy_plan(plan_B);
585 fftw_destroy_plan(planl_R); fftw_destroy_plan(planl_G); fftw_destroy_plan(planl_B);
586 }

587

588 void GetFaceRegion() {

589

590 int i, j, k, m, n, p, r, s;

591 double pom, poml;

592

593 // **x resize NxN (768x768) pix image to 80x80 pix
594

595 Reduce_Image_FFTW(N, 80);

596

597 [/ Rxkkkkkkkkkx

598 // **% 1 *xx buffer image (80x80 pix)

599 [/ KRkkkkkkkkkkk

600

601 for (i = 0; i < 80; i++)

602 for (j = 0; j <80; j++) {

603 A_B[il[j] = s_B[il[j];

604 A_G[il[j1 = S_G[il[j1;

605 A_R[il[j] = S_RL[il[j];

606 }

607

608 // *** resize original image to 52x52 pix ***
609

610 Reduce_Image_FFTW(80, 52);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

20

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

//

for

//

for

for

//

*%% buffer 52x52 pix image

(i = 0; i < 52; i++)
for (j = 0; j < 52; j++) {

bytesX[(size_t)i * 156 + (size_t)j * 3] = (byte)S_B[il[j];

bytesX[(size_t)i * 156 + (size_t)j * 3 + 1] = (byte)S_G[il[j];
bytesX[(size_t)i * 156 + (size_t)j * 3 + 2] = (byte)S_R[il[j]1;

}

Kk %k initialize objects
0;

(m=0; m< 14; m += 13)

for (n = 0; n<27; n +=13) {
for (p = 0; p < 26; p++)

for (r = 0; r < 26; r++)

REC[k]->SX_R[pl[r] =

REC[k]->SX_G[p]lLr]

REC[Kk]->SX_B[p][r]

Kk++;

}

26; n = 13;

(p = 0; p < 26; p++)

for (r = 0; r < 26; r++) {
REC[k]->SX_R[pI[r] = S_R[m +
REC[k]->SX_G[pl[r] = S_G[m
REC[k]->SX_B[p]l[r] = S_B[m

+

+

*%% process objects

{

S_R[m + pl[n + r];
S_G[m + pl[n + rl;
S_B[m + plln + rl;

plln + r];
plln + r];
plln + rl;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

euy

6U5 #ipragma omp parallel sections num_threads(2)
6U6 i

647 #pragma omp section

6u8 {

649 REC[0]->GetFreq();
650 REC[1]->GetFreq();
651 REC[2]->GetFreq();
652 }

653

654 #pragma omp section

655 {

656 REC[3]->GetFreq();
657 REC[4]->GetFreq();
658 REC[5]->GetFreq();
659 }

660 }

661

662 REC[6]->GetFreq();

663

664 // *%*% calculate probabilities
665

666 for (i = 0; i < brUz; i++) {
667 pom = 0;

668 for (j = 0; j < brObjects; j++)
669 pom += largX[jl[il;
670 pom /= brObjects;

671

672 if (pom > largest) {

673 largest = pom;

674 poz = i;

675 }

676 }

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

677

678 [/ Rkkkkkkkkkk

679 // **x 2 xxx cut frames from original image A *kk
680 [/ Rkkxkkkkkkk

681

682 s = 176;

683 while ((s > 51) && (KAMERA == 0)) {

684 for (m = 0; m< 80 — s; mt+)

685 for (n = 0; n <80 - s; nt+) {

686 for (i =m; i <m+ s; i++)

687 for (j =n; j<n+s; j+) {

688 S_B[i - m][j - n] = A_B[il[j1;

689 S_G[i - m]l[j - n] = A_G[i][jI1;

690 S_R[i - m][j - n] = A_R[i1[j];

691 }

692

693 // **x resize to 52x52 pix

694

695 if (s > 52) Reduce_Image_FFTW(s, 52);

696

697 k =0;

698 for (i = 0; i < 14; i += 13)

699 for (j = 0; j <27; j += 13) {

700 for (p = 0; p < 26; pt++)

701 for (r = 0; r < 26; r++) {

702 REC[k]->SX_R[pl[r] = S_R[i + pl[j + rl;
703 REC[Kk]->SX_G[pl[r] = S_G[i + pl[j + rl;
704 REC[k]->SX_B[pl[r] = S_B[i + pl[j + rl;
705 }

706 k++;

707 }

708

709 i=26; j=13;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

710 for (p = 0; p < 26; p++)

711 for (r = 0; r < 26; r++) {

712 REC[Kk]->SX_R[pl[r] = S_R[i + pl[j + rl;
713 REC[k]->SX_G[pl[r] = S_G[i + pl[j + rl;
714 REC[k]->SX_B[p][r] = S_B[i + p][j + rl;
715 }

716

717 // **x process objects

718

719 #pragma omp parallel sections num_threads(2)
720 1

721 #pragma omp section

722 1

723 REC[0]->GetFreq();

724 REC[1]->GetFreq();

725 REC[2]->GetFreq();

726 }

727

728 #pragma omp section

729 i

730 REC[3]->GetFreq();

731 REC[4]->GetFreq();

732 REC[5]->GetFreq();

733 3

734 }

735

736 REC[6]->GetFreq();

737

738 // *%% calculate probabilities

739

740 poml = largest;

741 for (i = 0; i < brUz; i++) {

742 pom = 0O;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

24

43
a4
745
746
a7
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

for (j = 0; j < brObjects; j++)
pom += largX[j1[il;
pom /= brObjects;

if (pom > largest) {
largest = pom;
poz = i;

}
// *x* buffer image

if (largest > poml) {
for (i = 0; i < 52; i++)
for (j = 0; j < 52; j++) {
bytesX[(size_t)i * 156 + (size_t)j * 3] = (byte)S_B[il[j];
bytesX[(size_t)i * 156 + (size_t)j * 3 + 1] = (byte)S_G[il[j]1;
bytesX[(size_t)i * 156 + (size_t)j * 3 + 2] = (byte)S_R[il[j]1;

}

void Distances(doublex** G, int* put) {

std::list<int> N, path;
std::list<int>::iterator n, m, it, itl;
int i;

for (i = 0; i < 300; ++i)
N.push_back(i);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

776

777 n = N.begin();

778 path.splice(path.end(), N, n);

779

780 while (!N.empty()) {

781

782 itl = N.begin(); it = path.begin();

783 for (m = path.begin(); m != path.end(); ++m) {
784 for (n = N.begin(); n != N.end(); ++n) {
785 if (G[*nl[*m] > GL»it1][*it]) {

786 it = m; itl = n;

787 }

788 }

789 }

790

791 path.splice(path.end(), N, itl);

792 }

793

791 i=o0;

795 for (n = path.begin(); n != path.end(); ++n)

796 put[i++] = =*n;

797 }

798

799 void RecognizedFace(int rez) {

800

801 int i, j;

802

803 sprintf_s(POM1, 200, ".\\MEMBERS\\%d.bmp", rez);
sou byte* bytes5 = new byte[96 * 96 * 3];

805 Mat frame = imread(POM1, IMREAD_COLOR);

806 if (!frame.empty()) {

807 std: :memcpy(bytes5, frame.data, ((size_t)96 * 96 * 3) * sizeof(byte));

808 for (i = 0; i < 96; i++)

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

809 for (j = 0; j <96; j++) {

810 S_B[il[j] = bytes5[i * 288 + j * 31;

811 S_G[il[j] = bytes5[i * 288 + j * 3 + 1];
812 S_R[il[j] = bytes5[i * 288 + j * 3 + 2];
813 }

814 }

815 delete[]bytes5;

816 1}

817

818 void ShowMemberImage(HWND hwnd, int selClanl) {

819

820 int i, j;

821

822 sprintf_s(POM, 200, "%s", names[selClanl]);

823 i=o0;

82u while (POM[i] != ' ') i++;

825 j = 0;

826 while (POM[++i] != '\@') POM[j++] = POM[i];

827 POM[j] = "\o';

828 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\%d.bmp", POM, (selClanl * 300 + 1));
829

830 bytes = new byte[96 * 96 * 3];

831 Mat frame = imread(POM1, IMREAD_COLOR);

832 if (!frame.empty()) {

833 std: :memcpy(bytes, frame.data, ((size_t)96 * 96 * 3) * sizeof(byte));
834

835 for (i = 0; i < 96; i++)

836 for (j = 0; j <96; j++) {

837 S_B[il[j] = bytes[i * 288 + j * 3];

838 S_G[il[j] = bytes[i * 288 + j * 3 + 11;
839 S_R[il[j] = bytes[i * 288 + j * 3 + 2];
80 }

8sul

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

27

8u2
8u3
suy
8ub5
8u6
8u7
8us8
8u9
850
851
852
853
854
855
856
857
858
859
860
861
862
863
8ol
865
866
867
868
869
870
871
872
873
874

HDC hdc = Ge
if (selClanl
for (i =
for

}
ReleaseDC(hw

}

delete[]bytes;
}

void ChangeButtonFon
LOGFONT 1f;
HFONT font;

memset(&Lf, 0O, s

tDCChwnd);

>-1) {

0; i < 96; i++)

(3 =0; j<96; j+¥)
SetPixel(Chdc, j + 4id, i, RGB((int)(S_R[il[j1), (int)(S_G[il[j]1), (int)(S_BL[il[j1)));

nd, hdc);

t(HWND hwnd) {

izeof(LOGFONT));

1f.1lfHeight = u8;

1f.lfwidth = 12;
lstrcpy(lf.lfFac
font = CreateFon

SendMessage(hlind
}

// Global Variables:
HINSTANCE hInst;

eName, _T("Monotype Corsiva"));
tIndirect(&lf);

, WM_SETFONT, (WPARAM)font, TRUE);

// current instance

WCHAR szTitle[MAX_LOADSTRING]; // The title bar text

WCHAR szWindowClass[

// Forward declarati
ATOM
BOOL

MAX_LOADSTRING]; // the main window class name

ons of functions included in this code module:
MyRegisterClass(HINSTANCE hInstance);
InitInstance(HINSTANCE, int);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

875 LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

876 INT_PTR CALLBACK About (HWND, UINT, WPARAM, LPARAM);

877 INT_PTR CALLBACK UnesiIme(HWND, UINT, WPARAM, LPARAM);

878 INT_PTR CALLBACK PregledClanovaBaze(HWND, UINT, WPARAM, LPARAM);
879 INT_PTR CALLBACK IzbaciClanBaze(HWND, UINT, WPARAM, LPARAM);

880 INT_PTR CALLBACK Create30ElementsDB(HWND, UINT, WPARAM, LPARAM);
881 INT_PTR CALLBACK DBImagesResize(HWND, UINT, WPARAM, LPARAM);

882 INT_PTR CALLBACK CheckBoxes(HWND, UINT, WPARAM, LPARAM);

883

884 int APIENTRY wWinMain(_In_ HINSTANCE hInstance,

885 _In_opt_ HINSTANCE hPrevInstance,

886 _In_ LPWSTR 1pCmdLine,

887 _In_ int nCmdShow)

888 {

889 UNREFERENCED_PARAMETER(ChPrevInstance);

890 UNREFERENCED_PARAMETER(1lpCmdLine);

891

892 // TODO: Place code here.

893

89y // Initialize global strings

895 LoadStringW(hInstance, IDS_APP_TITLE, szTitle, MAX_LOADSTRING);
896 LoadStringW(hInstance, IDC_FACEREC9, szWindowClass, MAX_LOADSTRING);
897 MyRegisterClass(hInstance);

898

899 // Perform application initialization:

9200 if (!InitInstance(hInstance, nCmdShow))

901 i

902 return FALSE;

903 }

oou

905 HACCEL hAccelTable = LoadAccelerators(hInstance, MAKEINTRESOURCE(IDC_FACEREC9));
906

9207 MSG msg;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

208

909 // Main message loop:

910 while (GetMessage(&msg, nullptr, 0, 0))

911 1

912 if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
913 {

914 TranslateMessage(&msg);

915 DispatchMessage(&msg);

916 }

917 3

918

919 return (int)msg.wParam;

920 1}

921

922 ATOM MyRegisterClass(HINSTANCE hInstance)

923 {

924 WNDCLASSEXW wcex;

925

926 wcex.cbSize = sizeof(WNDCLASSEX);

927

928 wcex.style = CS_HREDRAW | CS_VREDRAW;

929 wcex. LpfnWndProc = WndProc;

930 wcex.cbClsExtra = 0;

931 wcex.cbWndExtra = 0;

932 wcex.hInstance = hlInstance;

933 wcex.hIcon = LoadIcon(hInstance, MAKEINTRESOURCE(IDI_FACEREC9));
93y wcex.hCursor = LoadCursor(nullptr, IDC_ARROW);

935 wcex . hbrBackground = (HBRUSH) (COLOR_WINDOW + 3);
936 wcex.lpszMenuName = MAKEINTRESOURCEW(IDC_FACEREC9);
937 wcex.lpszClassName = szWindowClass;

938 wcex.hIconSm = LoadIcon(wcex.hInstance, MAKEINTRESOURCE(IDI_SMALL));
939

9ue return RegisterClassExW(&wcex);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

oul }

au2

943 BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)

ouy {

ous5 hInst = hInstance; // Store instance handle in our global variable

oue6

oy7 HWND hWnd = CreateWindowW(szWindowClass, szTitle, WS_OVERLAPPED | WS_SYSMENU | WS_MINIMIZEBOX,
oug CW_USEDEFAULT, 0, 468 + 16, 90 + 59, nullptr, nullptr, hInstance, nullptr);
949

950 if (!hwnd)

951 i

952 return FALSE;

953 }

o54

955 ShowWindow(ChwWnd, nCmdShow);

956 UpdateWindow(hwnd);

957

958 return TRUE;

959 }

960

961 LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM 1Param)
962 {

963 int i, j, Kk, m, n, p, r;

96U double pom;

965

966 switch (message)

967 i

968 case WM_CREATE:

969 {

970 povrat = CreateDynamicFields();

971 if (Cpovrat == 1) && (brUz == 1)) brUz = 0;
972 pprolaz = 1;

973

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 31
974 hwndButton = CreateWindowW(TEXT("button"),
975 TEXT(""), WS_CHILD | WS_VISIBLE | WS_TABSTOP | BS_BITMAP | BS_PUSHBUTTON,
976 310, 17, 140, 60, huind, NULL, C(CLPCREATESTRUCT)1Param)->hInstance, NULL);
977
978 // ChangeButtonFontChwndButton);
979
980 HANDLE hImg = LoadImage(NULL, L"face.bmp", IMAGE_BITMAP, @, ©, LR_DEFAULTCOLOR | LR_DEFAULTSIZE | ?
LR_LOADFROMFILE);
981 SendMessage ChwndButton, BM_SETIMAGE, IMAGE_BITMAP, (LPARAM)hImg);
982
983 // ShowWindow(ChwndButton, SW_HIDE);
984 }
985 break;
986
987 case WM_KILLFOCUS:
988 {
989 if ChwndButton == (HWND)wParam) {
990 SetFocus(hwWnd);
991
992 HDC hdc = GetDCChWnd);
993 HGDIOBJ penGreen = CreatePen(NULL, 1, RGB(223, 63, 63));
994 SelectObject(hdc, GetStockObject(NULL_BRUSH));
995 SelectObject(hdc, penGreen);
996 Rectangle(hdc, 308, 15, 452, 79);
997 ReleaseDC(hWnd, hdc);
998
999 SendMessage(hlind, WM_COMMAND, ID_RECOGNITION_RECOGNITIONWITHFACEDETECTION, 1L);
1000 }
1001
1002 InvalidateRect(hWnd, NULL, TRUE);
1003 3
1004 break;

1005

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1006 case WM_COMMAND:

1007 {

1008 int wmId = LOWORD(wParam);

1009 // Parse the menu selections:

1010 switch (wmId)

1011 {

1012 // *hkhkkkkhkkhkkhkkhkkhkkkhkhkhhhhkhkhkhkhkhkkhkhkhkhhkhhhhhkhkhkhkhhkhkhhhhhhhkhkhkhkkhkkhkkhkhkhhhhkx
1013 // *kkkk RECOGNITION khkkhkhkkhkhkkkhkhkkhkhkhkkhkhkkhkhhkkhkhkkkhhkkkk
1014 // E R T R R T X L T
1015

1016 case ID_RECOGNITION_RECOGNITION:

1017 {

1018 if (KAMERA == 0) break;

1019 KAMERA = 0,

1020

1021 if (brUz == 0)

1022 {

1023 MessageBox(hWnd, TEXT("Recognition database is empty !"), TEXT("FaceRec9 -> Message:"), MB_OK);
1024 KAMERA = 1;

1025 break;

1026 }

1027

1028 cap.open("rtsp://admin:0Oknardajl1@192.168.1.11/cam/realmonitor?channel=1&subtype=0");
1029 if (lcap.isOpened()) // if not success, exit program

1030 {

1031 MessageBox(hWnd, TEXT("Camera not connected !"), TEXT("FaceRec9 -> Message:"), MB_OK);
1032 KAMERA = 1;

1033 break;

1034 }

1035

1036 DisableProcessWindowsGhosting();

1037

1038 bytes = new byte[(size_t)N1 * (size_t)IN2 %= 3]1(); // buffer for captured image 768x1366 pix RGB

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1039 bytesl = new byte[27648]1(); // 96x96x3

1040

lo4d1l // **x create and initialize recognition object structure
1042

1043 for (i = 0; i < brObjects; i++) {

lou4 REC[i] = new GetFreq_REC(Q);

1045 REC[i]->brUz = bruUz;

10u6 REC[i]->sWitch = 1;

1047 REC[i]->largest = largX[i];

1048 REC[i]->R = R_REC[i];

1049 }

1050

1051 // *** load recognition DB data

1052

1053 for (j = 0; j < brUz; j++) {

1054 sprintf_s(POM, 200, ".\\DAT_DB_REC\\%d.dat", j + 1);
1055 if (fopen_s(&stream, POM, "r+b") == 0) {

1056 for (i = 0; i < brObjects; i++) {

1057 fread(R_REC[i][j], sizeof(double), (brFreq), stream);
1058 }

1059 fclose(stream);

1060 }

1061 else {

1062 MessageBox(Chnd, TEXT("Recognition DB not loaded !"), TEXT("FaceRec9 -> Message:"), MB_OK);
1063 goto LABI1;

1064 }

1065 }

1066

1067 omp_set_nested(1);

1068 omp_set_dynamic(0);

1069

1070 #pragma omp parallel sections shared(bytes, bytesl, largest, poz, KAMERA) num_threads(2)

1071 {

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

34

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

#pragma omp

{

section

GetImage_FACEREC(ChWnd); // image capture function

}

#pragma omp

{

section

DisableProcessWindowsGhosting();

std::this_thread: :sleep_for(std::chrono::milliseconds(200)); // time delay

while (KAMERA == 0) {

//

for

//

for

for

for

*x% split captured image (768x1366 pix) to RGB components

(i = 0; i < N1; i++)

for (j = 0; j < N2; j++) {
S_B[i][j] = bytes[(size_t)i * ((size_t)N2 * 3)
S_G[il[j] = bytes[(size_t)i * ((size_t)N2 * 3)
S_R[i][j] = bytes[(size_t)i * ((size_t)N2 * 3)

*%% cut 768x768 pix image for each RGB component

(i =0; i< N; i++)
for (j = 0; j < N; j++)
S_R[i][j] = S_R[i + (N1 - N) / 21[j + (N2 - N)
(i =0; i < N; i++)
for (j = 0; j < N; j++)
S_G[il[j] = s_G[i + (N1 - N) / 2]1[j + (N2 - N)

(i =0; i< N; i++)

+ (size_t)j * 31];

+ (size_t)j * 3 + 11];

+ (size_t)j * 3 + 2];

/ 21;

/ 21;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137

for (j =0; j < N; j++)
S_B[il[j] = S_B[i + (N1 - N) / 2]1[j + (N2 - N) / 2];

// **x resize RGB components to 4OxUO pix
Reduce_Image_FFTWCN, 96);

for (i = 0; i < 96; i++)
for (j = 0; j <96; j++) {
bytesl[i * 288 + 3 * j] = (byte)S_B[il[j];
bytesl[i * 288 + 3 * j + 1] = (byte)S_G[il[j];
bytesl[i * 288 + 3 %= j + 2] = (byte)S_R[il[j1;
}

Reduce_Image_FFTW(96, 52);
// *x* load data to object

k = 0;
for (m = 0; m < 14; m += 13)
for (n = 0; n< 27; n +=13) {
for (p = 0; p < 26; p++)
for (r = 0; r < 26; r++) {

REC[k]->SX_R[pI[r] = S_R[m + plln + rl;
REC[k]->SX_G[pl[r] = S_G[m + plln + r];
REC[k]->SX_B[pl[r] = S_B[m + plln + rl;

k++;

}

m=26; n = 13;
for (p = 0; p < 26; p++)
for (r = 0; r < 26; r++) {

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1le4
1165
1166
1167
1168
1169
1170

REC[k]->SX_R[pl[r] = S_R[m + pl[n + rl;
REC[k]->SX_G[pl[r] = S_G[m + pl[n + rl;
REC[k]->SX_B[pl[r] = S_B[m + pl[n + rl;

// *** process objects

#pragma omp parallel sections num_threads(2)

{

#pragma omp section

{
REC[0]->GetFreq();
REC[1]->GetFreq();
REC[2]—>GetFreq();
}
#pragma omp section
{
REC[3]->GetFreq();
REC[4]->GetFreq();
REC[5]->GetFreq();
}

}
REC[6]->GetFreq();

largest = 0; poz = -1;
for (i = 0; i < brUz; i++) {
pom = O;
for (j = 0; j < brObjects; j++)
pom += largX[j][il;
pom /= brObjects;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1171 if (pom > largest) {

1172 largest = pom;

1173 poz = i;

1174 }

1175 }

1176 } // end while()

1177

1178 } // inner pragma

1179 } // outer pragma

1180

1181 LAB1: KAMERA = 1;

1182 delete[] bytes;

1183 delete[] bytesl;

1184

1185 fftw_cleanup();

1186

1187 cap.release();

1188 ¥

1189

1190 break;

1191

1192 // *hkkkkhkkkkkhkkkhkhkhhhhkkkhkhkhkhkhhkhkhkhkhhhhkhkhkhkhkhkhhhhhhhhhkhkhkhkkhkhkhkhkhkhhhkkhkk
1193 // Fkkkok RECOGNITION WITH FACEDETECTION Fkkkkkkkkkkkkkkkk
1194 // *hkkkkhkkhkkhkkkhkkhkhkhkhhhhhkhkhkhkkhkhkhkhkhkhkhhhhhhkhkhkhkhkhkhkhhhhhhhkhkhkkhkkhkkhkhkhkhhhhhkk
1195

1196 case ID_RECOGNITION_RECOGNITIONWITHFACEDETECTION:
1197 i

1198

1199 if (KAMERA == 0) break;

1200 KAMERA = 0;

1201

1202 if (brUz == 0)

1203 {

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 38

1204 MessageBox(hWnd, TEXT("Recognition database is empty !"), TEXT("FaceRec9 -> Message:"), MB_OK);
1205 KAMERA = 1;

1206 break;

1207 }

1208

1209 cap.open("rtsp://admin:0Oknardajl1@192.168.1.11/cam/realmonitor?channel=1&subtype=0");
1210 if (!cap.isOpened()) // if not success, exit program

1211 {

1212 MessageBox(hWnd, TEXT("Camera not connected !"), TEXT("FaceRec9 -> Message:"), MB_OK);
1213 KAMERA = 1;

1214 break;

1215 }

1216

1217 DisableProcessWindowsGhosting();

1218

1219 bytes = new byte[(size_t)N1 * (size_tIN2 * 3]1(); // dimage captured from camera (N1 = 768, N2 = 1366)
1220 bytesl = new byte[8112](); // 52x52x3

1221 bytes3 = new byte[27648]1(); // 96x96x3

1222

1223 A_R = new doublex [80];

1224 A_G = new double* [80];

1225 A_B = new double* [80];

1226

1227 for (i = 0; i < 80; i++) {

1228 A_R[i] = new double[80]();

1229 A_G[i] = new double[80]1(Q);

1230 A_B[i] = new double[80]();

1231 }

1232

1233 // *** recognition objects creation and initialization

1234

1235 for (i = 0; i < brObjects; i++) {

1236 REC[i] = new GetFreq_REC(); // REC[i] = pointer to recognition object program structure

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

REC[i]->brUz = brUz;
REC[i]->sWitch = 1;
REC[i]->largest = largX[i];
REC[i]->R = R_REC[i];

// **x load face rec. DB

for (j = 0; j < brUz; j++) {
sprintf_s(POM, 200, ".\\DAT_DB_REC\\%d.dat", j + 1);
if (fopen_s(&stream, POM, "r+b") == 0) {

for (i = 0; i < brObjects; i++) {
fread(R_REC[i][j], sizeof(double), (brFreq), stream);

}
fclose(stream);
}
else {
MessageBox(hWind, TEXT("FaceRecognition DB not loaded !"), TEXT("FaceRec9 —> Message:"),
MB_OK);
KAMERA = 1;
goto LAB2;
}
}
largestl = largest = 0; poz = pozl = -1;
PROLAZ = O;

omp_set_nested(1);
omp_set_dynamic(0);

#pragma omp parallel sections shared(bytes, bytesl, bytes3, largest, KAMERA, \
largestl, poz, pozl, PROLAZ, PROLAZ1l) num_threads(2)

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

uo

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301

{

#pragma omp section

{
}

GetImage_FACEDET_REC(ChuWnd); //

#pragma omp section

{

DisableProcessWindowsGhosting();
std::this_thread: :sleep_for(std::
while (KAMERA == 0) {

largestl = largest = 0; pozl

for (p = 0; p < 52; p++)
for (r = 0; r < 52; r++)
bytesl[p * 156 + r *
bytesl[p * 156 + r *
bytesl[p * 156 + r *
}
for (i = 0; i < 96; i++)
for (j = 0; j < 96; j++)
bytes3[i * 288 + j *
bytes3[i * 288 + j *
bytes3[i * 288 + j *
}

bytesX = new byte[8112];

image capture function

chrono: :milliseconds(200));

= poz = -1; PROLAZ1l = 0;

{

3] = o;
3+1] =0;
3+2] =o0;
{

3] = 0;

3+ 1] = 0;
3+2] =0;

while ((largest < 0.2) & (KAMERA == 0)) {

// time delay

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

41

1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

// *%% split captured image to RGB components

for (i = 0; i < N1; i++)
for (j = 0; j < N2; j++) {
S_B[il[j] = bytes[(size_t)i * ((size_tIN2 * 3) + (size_t)j * 31;

S_G[i][j] = bytes[(size_t)i * ((size_t)N2 * 3) + (size_t)j * 3 + 11];

S_R[i][j] = bytes[(size_t)i * ((size_t)N2 * 3) + (size_t)j * 3 + 2];

// *** cut part of the image inside rectangle for each RGB component

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
S_R[il[j] = S_R[i + (N1 - N) / 2I[F + (N2 - N) / 2];

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
S_G[il[j] = S_G[i + (N1 - N) / 2][j + (N2 - N) / 2];
for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
S_B[il[j] = S_B[i + (N1 - N) / 2I[j + (N2 - N) / 2];

// ***% split image to regions for faster face detection and recognition

GetFaceRegion();
PROLAZ1++;

}

if (KAMERA == 1) {
delete[]bytesX;
break;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

42

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

}

for (i = 0; i < 52; i++)
for (j = 0; j < 52; j++) {

bytesl[i * 156 + j * 3] = bytesX[i * 156 + j * 31;

bytesl[i * 156 + j * 3 + 1] = bytesX[i * 156 + j > 3 + 1];
bytesl[i * 156 + j * 3 + 2] = bytesX[i * 156 + j > 3 + 2];

}
delete[]bytesX;
// **%* buffer DB image for display
largestl = largest; pozl = poz;
if (pozl > -1)
RecognizedFace(poz + 1);
for (i = 0; i < 96; i++)

for (j = 0; j <96; j++) {
bytes3[i * 288 + j * 3] = (byte)S_B[il[j];

bytes3[i * 288 + j * 3 + 1] = (byte)S_G[il[jI;
(byte)S_RI[il[jl1;

bytes3[i * 288 + j * 3 + 2]
}

std: :this_thread: :sleep_for(std: :chrono::milliseconds(6000));

PROLAZ++;

} // end while()

} // end pragma inner
} // end pragma outer

// time delay

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1368 LAB2: for (i = 0; i < 80; i++) {

1369 delete[] A_R[i];

1370 delete[] A_G[il;

1371 delete[] A_B[il;

1372 }

1373 delete[] A_R; delete[] A_G; delete[] A_B;

1374

1375 delete[]bytes3;

1376 delete[]bytesl;

1377 delete[]bytes;

1378

1379 fftw_cleanup();

1380

1381 cap.release();

1382 }

1383

1384 break;

1385

1386 // khkkkkkkkhkhkkkkhkkhhhkkhkkhkhhhkkhhhhkkhkhhhkhhhkkhkhhhkkkhhhkhhhhkkhhhkkhkkhhhhkkhkkhhhkkhkhhhkkkhhhkkkhhhkkk
1387 [/ kxxxk ADD NEW RECOGNITION AND DETECTION DB MEMBER (DISK) Fekdkkok ko ke kok ok Kk
1388 // khkkkhkhkkkhkhkhkhkkhkhkhhkkhkhkhhhkkhkhkhhhkhhhhhkhhhhkhkhhhhkkhhhkhkhhhhkhkhhhhkkhhhhkhkhhhkkhkhhhhkhkhkhkkkhhkkk
1389

1390 case ID_RECOGNITIONDB_ADDNEWRECOGNITIONDBMEMBER:

1391 {

1392 if (KAMERA == 0) break;

1393 KAMERA = 0;

1394

1395 cap.open("rtsp://admin:0Oknardajl1@192.168.1.11/cam/realmonitor?channel=1&subtype=0", CAP_ANY);
1396 if (lcap.isOpened()) // if not success, exit program

1397 {

1398 MessageBox(hWnd, TEXT("Camera not connected !"), TEXT("FaceRec9 -> Message:"), MB_OK);
1399 KAMERA = 1;

1400 break;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp Uy

1401 }

1402

1403 DisableProcessWindowsGhosting();

1404

1405 bytes = new byte[(size_t)N1 * (size_tIN2 * 3]1(); // #**x buffer for captured image from camera (N1 ==
768, N2 = 1366)

1406

1407 // **x initialize recognition and detection objects (Class)

1408

1409 for (i = 0; i < brObjects; i++) {

1410 REC[i] = new GetFreq_REC(Q);

1411 REC[i]->brUz = bruUz;

1412 REC[i]->sWitch = 0;

1413 }

1414

1415 omp_set_nested(1);

1416 omp_set_dynamic(0);

1417

1418 #pragma omp parallel sections shared(bytes, KAMERA, PROLAZ) num_threads(2)

1419 i

1420 #pragma omp section

1421 {

1422 GetImage_RecogDB(hWnd); // **x procedure for image capture from camera

1423 }

1424

1425 #pragma omp section

1426 1

1427 DisableProcessWindowsGhosting();

1428

1429 std: :this_thread: :sleep_for(std::chrono::milliseconds(200)); // time delay

1430

1431 // **x 1images saving loop

1432

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp u5

1433
1434

1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
lde4

PROLAZ =

©; // counter

while ((PROLAZ < (50 + 300)) && (KAMERA == 0)) { // =**x brUzObj = nr. of images per member =»

(300)

//

for

//

for

for

for

//

*%% split captured image to RGB component arrays

(i =0; i < N1;
for (j =0; j<
S_B[il[j]
S_G[il[j]
S_R[il[j]

i++)

N2; j++) {

bytes[(size_t)i * ((size_tIN2 * 3) + (size_t)j * 31;
bytes[(size_t)i * ((size_t)IN2 * 3) + (size_t)j * 3 + 1];
bytes[(size_t)i * ((size_t)IN2 * 3) + (size_t)j * 3 + 2];

*%x% cut image inside white rectangle (768x768 pix, N = 768) for each component

(i =0; i <N; i++)

for (j =0; j <
S_R[il[j] =

N; j++)
S_R[i + (N1 - N) / 21[j + (N2 - N) / 21;

(i =0; 1 < N; i++)

for (j = 0; j <
S_G[il[j] =

N; j++)
S_G[i + (N1 - N) / 2I[F + (N2 - N) / 2];

(i =0; i <N; i++)

for (j =0; j <
S_B[ill[j]

*%x% create dir

if (PROLAZ == 49) {
CreateDirectoryA(" .\\MEMBERS\\NEW", NULL);

}

N; j++)
S_B[i + (N1 - N) / 21[j + (N2 - N) / 21;

for new member

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

// **x skip first 50 images for head positioning before saving
if (PROLAZ > u49) {
Mat frame2;
bytesX = new byte[276u48]; // 96x96x3
// *** resize image, put image in the buffer and save with imwrite()
Reduce_Image_FFTW(N, 96);
for (i = 0; i < 96; i++)
for (j =0; j <96; j++) {
bytesX[i * 288 + 3 * j] = (byte)S_B[il[j];
bytesX[i * 288 + 3 = j + 1] = (byte)S_G[il[j];
bytesX[i * 288 + 3 * j + 2] = (byte)S_R[il[j];
}
sprintf_s(POM, 200, ".\\MEMBERS\\NEW\\%d.bmp", brUz / brUzObj * 300 + PROLAZ - u49);
frame2 = Mat(96, 96, CV_8UC3, bytesX).clone();
imwrite(POM, frame2);

delete[] bytesX;
} // end while()

// **x time delays

if (PROLAZ < 50) std::this_thread::sleep_for(std::chrono::milliseconds(300));
else std::this_thread::sleep_for(std::chrono::milliseconds(2));

PROLAZ++;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp u7

1498 } // end while()

1499

1500 if ((PROLAZ > u8) && (KAMERA == 1)) {

1501 system("rmdir /Q /S .\\MEMBERS\\NEW");

1502 goto LAB3;

1503 }

1504

1505 if (PROLAZ == (50 + 300)) {

1506

1507 // **% give name to the new member directory

1508

1509 LABX: DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG1), hlind, UnesiIme);

1510 if (cancel == 1) {

1511 system("rmdir /Q /S .\\MEMBERS\\NEW");

1512 goto LAB3;

1513 }

1514

1515 if (Cpom[e] == '\e') || (pomM[e] == "' ")) {

1516 MessageBox(hiind, TEXT("Wrong input, try again !"), TEXT("FaceRec9 -> Message:"), ?
MB_OK) ;

1517 goto LABX,;

1518 3

1519

1520 sprintf_s(POM1, 200, ".\\MEMBERS\\%s", POM);

1521 sprintf_s(POM2, 200, ".\\MEMBERS\\NEW");

1522 if (rename(POM2, POM1) != Q) {

1523 MessageBox(hiind, TEXT("This name already exists, type new name !"), TEXT("FaceRec9 -> =»
Message:"), MB_OK);

1524 goto LABX;

1525 3

1526

1527 sprintf_s(POM2, 200, "%s\\DB_REC", POM1);

1528 CreateDirectoryA(POM2, NULL);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1529

1530 sprintf_s(POM2, 200, "%s\\Members30", POM1);

1531 CreateDirectoryA(POM2, NULL);

1532

1533 // *%% databases creation loop

1534

1535 PROLAZ = ©0;

1536 while ((PROLAZ < 300) && (KAMERA == 0)) {

1537

1538 Mat frame;

1539

1540 bytesX = new byte[276U8]; // 96x96x3

1541

1542 // **x load image

1543

1544 sprintf_s(POM2, 200, "%s\\%d.bmp", POM1, (brUz / brUzObj * 300 + PROLAZ + 1));
1545 frame = imread(POM2, IMREAD_COLOR);

15u6 if (frame.empty()) {

1547 PROLAZ = -4;

1548 goto LAB3;

1549 }

1550

1551 // *** put image in the buffer

1552

1553 size_t size = frame.total() * frame.elemSize();
1554 std: :memcpy(bytesX, frame.data, size * sizeof(byte));
1555

1556 // *** split image into RGB component arrays
1557

1558 for (1 = 0; i < 96; i++)

1559 for (j = 0; j <96; j++) {

1560 S_B[il[j] = bytesX[i * 288 + j * 31;

1561 S_G[il[j] = bytesX[i * 288 + j * 3 + 1];

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1562 S_R[il[j] = bytesX[i * 288 + j * 3 + 2];
1563 ¥

1564

1565 delete[] bytesX;

1566

1567 // *** resize image

1568

1569 Reduce_Image_FFTW(96, 52);

1570

1571 // *%x initialize objects

1572

1573 k = 0;

1574 for (m = 0; m < 14; m += 13)

1575 for (n = 0; n< 27; n += 13) {

1576 for (p = 0; p < 26; pt++)

1577 for (r = 0; r < 26; r++) {

1578 REC[k]->SX_R[pI[r] = S_R[m + plln + rl;
1579 REC[k]1->SX_GL[pl[r] = S_G[m + plln + rl;
1580 REC[k]->SX_B[pl[r] = S_B[m + pl[n + rl;
1581 }

1582 k++;

1583 }

1584

1585 m=26; n=13;

1586 for (p = 0; p < 26; p++t)

1587 for (r = 0; r < 26; r++) {

1588 REC[k]->SX_R[pl[r] = S_R[m + pl[n + rl;
1589 REC[k]->SX_G[pl[r] = S_G[m + pl[n + r];
1590 REC[k]->SX_B[pl[r] = S_B[m + pl[n + rl;
1591 }

1592

1593 // *%*x process objects

1594

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

50

1595
1596
1597
1598
1599
1600
1601
1602
1603
le04
1605
1606
1607
1608
1609
1610
1611
1612
1613
le14
1615
1616
1617
1618
1619
1620
1621
1622
1623
le24
1625
1626
1627

#pragma omp parallel sections num_threads(2)

{
#pragma omp section
{
REC[O]->GetFreq();
REC[l]—>GetFreq();
REC[2]->GetFreq();
}
#pragma omp section
{
REC[3]->GetFreq();
REC[U4]->GetFreq();
REC[5]->GetFreq();
}
}

REC[6]->GetFreq(Q);
// *** save freq. to disk

sprintf_s(POM2, 200, "%s\\DB_REC\\%d.dat", POM1, brUz / brUzObj * 300 + PROLAZ + 1);
if (fopen_s(&stream, POM2, "w+b") == 0) {

for (i = 0; i < brObjects; i++)

fwrite(REC[i]->X, sizeof(double), (brFreq), stream);

fclose(stream);
}
else {

PROLAZ = -5;

goto LAB3;

PROLAZ++;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1628

1629 } // end while()

1630

1631 if (PROLAZ < 300) {

1632 sprintf_s(POM2, 200, ".\\MEMBERS\\NEW");
1633 rename(POM1, POM2);

1634 system("rmdir /Q /S .\\MEMBERS\\NEW");
1635 goto LAB3;

1636 }

1637

1638 // **x change data about databases and reboot databases with new member
1639

1640 if (PROLAZ == 300) {

l64l

1642 brUz += brUzObj;

1643 if (SpremiPodatke(0) == 0) {
leudy PROLAZ = -7;

1645 goto LAB3;

166 }

leu47 brUz -= brUzObj;

1648

1649 DestroyDynamicFields();

1650 povrat = CreateDynamicFields();
1651 if (povrat == 0) {

1652 PROLAZ = -8;

1653 goto LAB3;

1654 }

1655 PROLAZ = -9;

1656 pprolaz = 1;

1657

1658 InvalidateRect(hlind, NULL, TRUE);
1659 }

1660

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 52

1661 } // end if(Q)

1662

1663 LAB3: KAMERA = 1;

lé664

1665 } // pragma inner

1666 } // pragma outer

1667

1668 if (PROLAZ < 0) {

1669

1670 switch (PROLAZ) {

1671

1672 case (-1):

1673 MessageBox(hWnd, TEXT("Memory allocation for image failed !"), TEXT("FaceRec9 -> Message:"), =
MB_OK) ;

1674 break;

1675

1676 case (-2):

1677 MessageBox(hwind, TEXT("Image not saved !"), TEXT("FaceRec9 -> Message:"), MB_OK);

1678 break;

1679

1680 case (-3):

1681 MessageBox(hwnd, TEXT("Some inputs are wrong !"), TEXT("FaceRec9 -> Message:"), MB_OK);

1682 break;

1683

1684 case (-4):

1685 MessageBox(hWind, TEXT("Image not read !"), TEXT("FaceRec9 -> Message:"), MB_OK);

1686 break;

1687

1688 case (-5):

1689 MessageBox(hwnd, TEXT("REC data file not saved !"), TEXT("FaceRec9 —-> Message:"), MB_OK);

1690 break;

1691

1692 case (-6):

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 53

1693
le94
1695
1696
1697

1698
1699
1700
1701

1702
1703
1704
1705

1706
1707
1708
1709
1710
1711

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

MessageBox(Chwnd, TEXT("DET data file not saved !"), TEXT("FaceRec9 —> Message:"), MB_OK);
break;

case (-7):
MessageBox(hind, TEXT("brUzoraka.txt or names.txt not saved !"), TEXT("FaceRec9 -> Message:"), =
MB_OK) ;
break;

case (-8):
MessageBox(hWnd, TEXT("Dynamic arrays are not properly created !"), TEXT("FaceRec9 -> ?
Message:"), MB_OK);
break;

case (-9):
MessageBox(Chwnd, TEXT("New DB Member succesfuly added !"), TEXT("FaceRec9 —> Message:"), ?

MB_OK);
break;

}

else MessageBox(hWnd, TEXT("New DB Member creation interrupted !"), TEXT("FaceRec9 -> Message:"), ?
MB_OK);

delete[]bytes;

fftw_cleanup();

cap.release();

}

break;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 54

1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753

// Khkhkhkhkhkhhkhkhkhkhkhhkhkhhkhkhhkhhhhkhhhhhhhhhhhhhhhkhhkhhkhhkhhkhkhhkhkhhkhhhhhhhhhhhhhhhkhhkhhkhkhkhkdkk
// * %k k*k SELECT AND DELETE DB MEMBER Khkkhkkkkhhkkkkhkhkhkkkk
// R L T T T T T T T T T T T T T T e T

case ID_RECOGNITIONDB_SELECTANDDELETEDBMEMBER:
1

if (KAMERA == 0) break;
KAMERA = 0;
selClan = -1;

DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOGU), hWnd, IzbaciClanBaze);

if (selClan == -1) {
KAMERA = 1;
break;

}

i = MessageBox(hWnd, TEXT("Do You want to delete selected DB Member ?"), TEXT("FaceRec9 —> Message:"), =
MB_OKCANCEL | MB_ICONQUESTION);
if (i == IDCANCEL) {
KAMERA = 1;
break;

}

DisableProcessWindowsGhosting();

j = selClan * brUzObj;

for (i = j; 1 < j + brUzObj; i++) {
sprintf_s(POM, 200, ".\\DAT_DB_REC\\%d.dat", i + 1);
DeleteFileA(POM);
sprintf_s(POM, 200, ".\\MEMBERS\\%d.bmp", i + 1);
DeleteFileA(POM);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

55

1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786

}

for

for

(i = j + brUzObj; i < brUz; i++) {

sprintf_s(POM, 200, ".\\DAT_DB_REC\\%d.dat", i + 1);
sprintf_s(POM1, 200, ".\\DAT_DB_REC\\%d.dat", i + 1 - brUz0bj);
rename(POM, POM1);

sprintf_s(POM, 200, ".\\MEMBERS\\%d.bmp", i + 1);
sprintf_s(POM1, 200, ".\\MEMBERS\\%d.bmp", i + 1 - brUzObj);
rename(POM, POM1);

(k = selClan + 1; k < brUz / brUzObj; k++) {
strcpy_s(POM, names[k]);

i=0;

while (POM[i] != ' ') i++;

for (j = ++i; j < strlen(POM); j++)
POM[j - i] = POM[j];

POM[j - i] = '\@';

for (j = 0; j < 300; j++) {

sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\DB_REC\\%d.dat", POM, k * 300 + j + 1);
sprintf_s(POM2, 200, ".\\MEMBERS\\%s\\DB_REC\\%d.dat", POM, k * 300 + j - 300 + 1);
rename(POM1, POM2);

sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\%d.bmp", POM, k * 300 + j + 1);
sprintf_s(POM2, 200, ".\\MEMBERS\\%s\\%d.bmp", POM, k * 300 + j - 300 + 1);
rename(POM1, POM2);

for (j = 0; j < 30; j++) {
sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\Members30\\%d.bmp", POM, k * 30 + j + 1);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1787 sprintf_s(POM2, 200, ".\\MEMBERS\\%s\\Members30\\%d.bmp", POM, k * 30 + j - 30 + 1);
1788 rename(POM1, POM2);

1789 }

1790

1791 }

1792

1793 strcpy_s(POM, names[selClan]);

1794

1795 i=o0;

1796 while (POM[i] != ' ') i++;

1797 for (j = ++i; j < strlen(POM); j++)

1798 POM[j - i] = POM[j];

1799 POM[j - il = "\@';

1800

1801 j = selClan * 300 + 1;

1802 for (i = j; 1 < j + 300; i++) {

1803 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\%d.bmp", POM, 1i);
1804 DeleteFileA(POM1);

1805 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\DB_REC\\%d.dat", POM, i);
1806 DeleteFileA(POM1);

1807 }

1808

1809 j = selClan * 30 + 1;

1810 for (i = j; i < j + 30; i++) {

1811 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\Members30\\%d.bmp", POM, i);
1812 DeleteFileA(POM1);

1813 }

1814

1815 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\DB_REC", POM);

1816 RemoveDirectoryA(POM1);

1817 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\Members30", POM);
1818 RemoveDirectoryA(POM1);

1819 sprintf_s(POM1, 200, ".\\MEMBERS\\%s", POM);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

57

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846

1847
1848
1849
1850
1851

RemoveDirectoryA(POM1);

for (i = 0; i < brUz / brUzObj; i++) {
j=0
while (names[i][j] != ' ') j++;
j++; k = 0;
while (names[il[j] != '"\0') {
names[i][k] = names[il[j];
j++; K++;
}
names[i][Kk] = '\0';
}

if (fopen_s(&stream, ".\\names.txt", "w+t") == 0) {
j=09;
for (i = 0; i < brUz / brUzObj; i++) {
if (i == selClan) continue;
fprintf_s(stream, "%d. %s\n", j + 1, names[i]);
Jt;
}
fprintf_s(stream, "#");
fclose(stream);
}
else {
selClan = -1;
KAMERA = 1;

MessageBox(huind, TEXT("Can not open file names.txt,\n check DB !"), TEXT("FaceRec9 -> Message:"), =

MB_OK);
break;

}

selClan = -1;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1852
1853
1854
1855
1856
1857
1858
1859
1860
1861

1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883

DestroyDynamicFields();

brUz -= brUzObj;
if (fopen_s(&stream, "brUzoraka.txt", "w+t") == 0) {
fprintf_s(stream, "%d,%d#", brUz, brUzObj);

fclose(stream);
}
else {
KAMERA = 1;
MessageBox(hWnd, TEXT("Can not open file brUzoraka.txt,\n check DB !"), TEXT("FaceRec9 ->
Message:"), MB_OK);
break;
}

povrat = CreateDynamicFields();

if (povrat == 1)
MessageBox(hWnd, TEXT("DB Member deleted !"), TEXT("FaceRec9 —> Message:"), MB_OK);

pprolaz = 1;
KAMERA = 1;

InvalidateRect(hWind, NULL, TRUE);
}

break;
// khkkkkkkkkkkhkhkhkhkhkhkkkhkhkhkhkhkhkhkhkhkhkhhhkhkkhkhkhkhkhkhhhhhhhkhkhkhkkhkhkhkhhhkhkhkhhhkhkhkhkkhkkhkhkhkkkhkhhkkkkkkk

/] Hxkxk RECOMPILE RECOGNITION AND DETECTION DATABASE (MEMORY) Fkkkkkkkkk

// hhkkhkkhkhkhkkhkhhkhkhhkhkhkhhhkhhhkhhhhhkhhhkhhhhhhkhhhhhhhhhhhhhhhhhhhhkhhhhhhhhdhkhkhrhkdkhkrkx

case ID_RECOGNITIONDB_RECOMPILERECOGNITIONDATABASE:

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1884 {

1885 if (KAMERA == Q) break;

1886 KAMERA = 0;

1887

1888 i = MessageBox(hWnd, TEXT("Do You want to recompile Database ?"), TEXT("FaceRec9 -> Message:"),
MB_OKCANCEL | MB_ICONQUESTION);

1889 if (i == IDCANCEL) {

1890 KAMERA = 1;

1891 break;

1892 ¥

1893

1894 DisableProcessWindowsGhosting();

1895

1896 for (i = 0; i < brObjects; i++) {

1897 REC[i] = new GetFreq_REC(Q);

1898 REC[i]->brUz = brUz;

1899 REC[i]->sWitch = 0;

1900 ¥

1901

1902 PROLAZ = 0;

1903 while (PROLAZ < brUz) {

1904

1905 Mat frame;

1906

1907 bytesX = new byte[276u48]; // 96x96x3

1908

1909 // **x load image

1910

1911 sprintf_s(POM, 200, ".\\MEMBERS\\%d.bmp", (PROLAZ + 1));

1912 frame = imread(POM, IMREAD_COLOR);

1913 if (frame.empty()) {

1914 PROLAZ = -2;

1915 break;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
lo44
1945
1946
1947
1948

}
// **x split image to RGB components

size_t size = frame.total() * frame.elemSize();
std: :memcpy(bytesX, frame.data, size * sizeof(byte));

for (i = 0; i < 96; it++)

for (j = 0; j <96; j++) {
S_B[il[j] = bytesX[i * 288 + j * 31;
S_G[il[j] = bytesX[i * 288 + j * 3 + 11;
S_R[il1[j] = bytesX[i * 288 + j * 3 + 2];

}
delete[] bytesX;
// *%* resize image to 52x52 pix
Reduce_Image_FFTW(96, 52);

k =0;
for (m = 0; m < 14; m += 13)
for (n = 0; n<27; n +=13) {
for (p = 0; p < 26; p++)
for (r = 0; r < 26; r++) {

REC[k]->SX_R[pI[r] = S_R[m + pl[n + rl;
REC[Kk]->SX_G[pl[r] = S_G[m + plln + r];
REC[k]->SX_B[pl[r] = S_B[m + pl[ln + rl;

k++;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981

for (p = 0; p < 26; p++)
for (r = 0; r < 26; r++) {
REC[K]->SX_R[pl[r] = S_R[m + pl[n + r];
REC[k]->SX_G[pl[r] = S_G[m + pl[n + rl;
REC[k]1->SX_B[p][r] = S_B[m + plln + r];

// **x process objects

#pragma omp parallel sections num_threads(2)

{
#pragma omp section
{
REC[0]->GetFreq();
REC[1]->GetFreq();
REC[2]->GetFreq();
}
#pragma omp section
{
REC[3]->GetFreq();
REC[4]->GetFreq(Q);
REC[5]->GetFreq();
}
}

REC[6]->GetFreq();

sprintf_s(POM2, 200, ".\\DAT_DB_REC\\%d.dat", PROLAZ + 1);
if (fopen_s(&stream, POM2, "w+b") == 0) {
for (i = 0; i < brObjects; i++)
fwrite(REC[i]->X, sizeof(double), (brFreq), stream);
fclose(stream);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 62

1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

1995

1996
1997

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

}

else {
PROLAZ = -5;
break; ;

PROLAZ++;

} // end while(Q)

KAMERA = 1;
if (PROLAZ == -1) MessageBox(hWind, TEXT("Problem opening the file x.dat !"), TEXT("FaceRec9 -> ?
Message:"), MB_OK);
else if (PROLAZ == brUz) MessageBox(hWnd, TEXT("Recognition and Detection Database Creation ?
finished !'"),
TEXT("FaceRec9 —> Message:"), MB_OK);
else if (PROLAZ == -2) MessageBox(hWind, TEXT("Problem reading image x.jpg !"), TEXT("FaceRec9 -> ?

Message:"), MB_OK);
else MessageBox(hWind, TEXT("DataBase creation interrupted !"), TEXT("FaceRec9 -> Message:"), MB_OK);

fftw_cleanup();

break;

// Khkhkhkhkhkhkkhkhkhkkhkkhkkhkkhkhhkhkhhkhhkhhhhhhkhkhkhkhkkhkhkhkhkkhkkhhkhkdhkhkhhkhhkhhhkhhhhkhkhkhkkhkkhkkkkkx
// *kkk*k RECOGNITION DB MEMBERS OVERVIEW hhkkkkkkkkkhkhkkkhkkkkhkhkhkkkkkkhkhkkkkkkx
// X T T T T L T T T T T T T T T T T

case ID_OVERVIEW_RECOGNITIONDBMEMBERSOVERVIEW:

{

DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG3), hWnd, PregledClanovaBaze);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 63

2012 }

2013 break;

2014

2015 // khkkkhkkkkhkhkhkkhkkhkhhkkhkkhhhhkkhkhhhhkhhhhhkhhhkkhhhhhkhhhhkhhhhkkhhhkhkhhhhkkhkkhhhkkhkhhhkkkhhkkkhhkkk

2016 // * kKKK RECOGNITION DB MEMBERS SELECTION *kkkkhkkkkkhhkhkkkkkhkhhkkkkkkdhkkkkk

2017 // khkkkhkhkkkhkhkhhkkhkhkhhkkhkkhkhhhkhkhhhhkkhhhhhhhhhkhkhhhhkkhhhhkhkhhhhhhhhhkkhkhhhkhkkhkhhhkkhkkhkhhkhkhkkhhkkkhkhhkkk

2018

2019 case ID_TOOLS_DBMEMBERSSELECTION:

2020 {

2021 if (KAMERA == Q) break;

2022 KAMERA = 0;

2023

2024 selClan = -1;

2025

2026 DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG5), hWnd, Create30ElementsDB);

2027

2028 if (selClan == -1) {

2029 KAMERA = 1;

2030 break;

2031 }

2032

2033 i = MessageBox(hWnd, TEXT("Do You want to create 30 elements DB Member ?"), TEXT("FaceRec9 —> ?
Message:"), MB_OKCANCEL | MB_ICONQUESTION);

2034 if (i == IDCANCEL) {

2035 KAMERA = 1;

2036 break;

2037 }

2038

2039 DisableProcessWindowsGhosting();

2040

2041 PROLAZ = 0;

2042

20u3 strcpy_s(POM, names[selClan]);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2044

2045 i=o;

2046 while (POM[i] != ' ') i++;

2047 for (j = ++i; j < strlen(POM); j++)

20u8 POM[j - il = POM[j];

2049 POM[j - i] = "\0';

2050

2051 // **x create dynamic fields

2052

2053 int* put = new int[300]Q);

2054

2055 double** G = new double* [300];

2056 for (i = 0; i < 300; i++)

2057 G[i] = new double[300]1();

2058

2059 double*xx X_REC = new double** [300];

2060 for (i = 0; i < 300; i++) {

2061 X_REC[i] = new double* [(size_t)brObjects];
2062 for (j = 0; j < brObjects; j++) {

2063 X_REC[i][j] = new double[brFreql;
2064 }

2065 }

2066

2067 // **x load recognition DB data

2068

2069 for (i = 0; i < 300; i++) {

2070

2071 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\DB_REC\\%d.dat", POM, selClan * 300 + i + 1);
2072 if (fopen_s(&stream, POM1, "r+b") == 0) {
2073 for (j = 0; j < brObjects; j++)

2074 fread(X_REC[i][j], sizeof(double), (brFreq), stream);
2075 fclose(stream);

2076 }

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109

/*

else {
PROLAZ = -1;
goto LAB4;

}

}

// *** calculate mutual differences between elements
// **x in the recognition database
// **x creation of G array

for (i = 0; i < 300; i++)
for (j = 0; j < 300; j++) {

for (m = 0; m < brObjects; m++) {
pom = 0;
for (n = 0; n < brFreq; n++)

pom += fabs(X_REC[il[ml[n] - X_REC[j1[m][n1);

G[il[j] += exp(-pow(pom, 10) / 2.0E-7);

}

G[i]l[j]1 /= brObjects;

// *** order elements according to distances **xx*
Distances(G, put);
// **% save order for selected member

sprintf_s(POM1, 200, "%s_All.txt", POM);
if (fopen_s(&stream, POM1, "w+t") == 0) {
for (i = 0; i < 300; i++)
fprintf_s(stream, "%d\n", put[i] + 1);
fclose(stream);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2110 }

2111 else {

2112 PROLAZ = -2;

2113 goto LAB4;

2114 }

2115

2116 // *** pick 30 elements from order and save *xx*
2117

2118 poz = 5;

2119 sprintf_s(POM1, 200, "%s.txt", POM);

2120 if (fopen_s(&stream, POM1, "w+t") == 0) {

2121 for (i = poz; i < 300; i += 10)

2122 fprintf_s(stream, "%d\n", put[i] + 1);
2123 fclose(stream);

2124 }

2125 else {

2126 PROLAZ = -3;

2127 goto LAB4;

2128 ¥

2129 x/

2130 // ***% select 30 images out of 300 according to the selected elements, and renumber #*x*
2131

2132 j = 0;

2133 for (i = 5; 1 < 300; i += 10) {

2134 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\%d.bmp", POM, selClan * 300 + put[i] + 1);
2135 Mat frame = imread(POM1, IMREAD_COLOR);

2136 if (frame.empty()) {

2137 PROLAZ = -4,

2138 goto LAB4,;

2139 }

2140

2141 sprintf_s(POM1, 200, ".\\MEMBERS\\%s\\MEMBERS30\\%d.bmp", POM, selClan * brUzObj + j + 1);

2142 if (!imwrite(POM1, frame)) {

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175

LABL:

PROLAZ = -5;
goto LAB4;
}

sprintf_s(POM1, 200, ".\\MEMBERS\\%d.bmp", selClan * brUzObj + j + 1);
if (Yimwrite(POM1, frame)) {

PROLAZ = -6;
goto LAB4;

JH;

}
switch (PROLAZ) {

case (0):
MessageBox(hund,
break;

case (-1):
MessageBox(hlind,
break;

case (-2):
MessageBox(hnd,
break;

case (-3):
MessageBox(hlind,
break;

case (-4):
MessageBox(huwnd,

TEXT("Member DB elements selected !"), TEXT("FaceRec9 -> Message:"), MB_OK);

TEXT("Recognition DB not loaded !"), TEXT("FaceRec9 -> Message:"), MB_OK);

TEXT("Can not open member_All.txt !"), TEXT("FaceRec9 —> Message:"), MB_OK);

TEXT("Can not open selected member.txt !"), TEXT("FaceRec9 —> Message:"), MB_OK);

TEXT("Can not read selected images !"), TEXT("FaceRec9 -> Message:"), MB_OK);

67

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp 68

2176
2177
2178
2179

2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207

break;

case (-5):
MessageBox(hiind, TEXT("Can not write Members30 selected images !"), TEXT("FaceRec9 —> Message:"), =
MB_OK) ;
break;

case (-6):
MessageBox(hWnd, TEXT("Can not write selected images !"), TEXT("FaceRec9 -> Message:"), MB_OK);
break;

}

// #*x% destroy dynamic arrays
delete[] put;

for (i = 0; i < 300; i++) {
for (j = 0; j < brObjects; j++)
delete[] X_REC[il[j];
delete[] X_REC[il;
}
delete[] X_REC;

for (i = 0; i < 300; i++)
delete[] G[il;

delete[] G;
KAMERA = 1;
}
break;

case ID_TOOLS_MONITORSELECT:

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

69

2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240

{
DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG6), huWnd, CheckBoxes);
if (cancel == 1) break;
sprintf_s(POM, 200, ".\\monitors.dat");
if (fopen_s(&stream, POM, "w+b") == 0) {
fwrite(checkBoxes, sizeof(LRESULT), (2), stream);
fclose(stream);
}
else {
MessageBox(hund, TEXT("Can not open monitors.dat !"), TEXT("FaceRec9 -> Message:"), MB_OK);
break;
}
if (checkBoxes[1] == BST_CHECKED) {
XX = GetSystemMetrics(SM_CXSCREEN);
YY = —-GetSystemMetrics(SM_CYSCREEN);
}
else {
XX = 0;
YY = 0;
}
if (fopen_s(&stream, "resolution.txt", "w+t") == 0) {
fprintf_s(stream, "%d %d", XX, YY);
fclose(stream);
}
}
break;

case IDM_ABOUT:

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2241

2242 DialogBox(hInst, MAKEINTRESOURCE(IDD_ABOUTBOX), hlind, About);
2243 break;

2244

2245 case IDM_EXIT:

2246

2247 DestroyWindow(Chwnd);

2248 break;

2249

2250 default:

2251 return DefWindowProc(ChWnd, message, wParam, lParam);
2252 }

2253 }

2254 break;

2255

2256

2257

2258 case WM_PAINT:

2259 i

2260 PAINTSTRUCT ps;

2261 HDC hdc = BeginPaint(Chuind, &ps);

2262

2263 HGDIOBJ penGray = CreatePen(NULL, 1, RGB(0, 0, 0));
2264 SelectObject(hdc, GetStockObject(DC_BRUSH));

2265 SetDCBrushColor(hdc, RGB(95, 127, 191));

2266 SelectObject(hdc, penGray);

2267 Rectangle(hdc, 0, 0, 468, 90);

2268

2269 SelectObject(hdc, GetStockObject(OEM_FIXED_FONT));
2270 SetBkColor(hdc, RGB(95, 127, 191));

2271 SetTextColor(Chdc, RGB(O, 0, 0));

2272

2273 sprintf_s(POM, 200, "total Nr. of Patterns: %d", brUz);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2274 TextOutAChdc, 10, 20, POM, (int)strlen(POM));

2275

2276 sprintf_s(POM, 200, "Nr. of Patterns per Object: %d", brUzObj);
2277 TextOutAChdc, 10, 40, POM, (int)strlen(POM));

2278

2279 if (povrat == 1) {

2280 SetTextColor(Chdc, RGB(63, 191, 63));

2281 sprintf_s(POM, 200, "Dynamic arrays properly created !");
2282 TextOutAChdc, 10, 60, POM, (int)strlen(POM));

2283 ¥

2284 else {

2285 SetTextColor(Chdc, RGB(191, 63, 63));

2286 sprintf_s(POM, 200, "Dynamic arrays not created !");
2287 TextOutAChdc, 10, 60, POM, (int)strlen(POM));

2288 }

2289

2290 HGDIOBJ penGreen = CreatePen(NULL, 1, RGB(63, 223, 63));
2291 SelectObject(hdc, GetStockObject(NULL_BRUSH));

2292 SelectObject(hdc, penGreen);

2293 Rectangle(hdc, 308, 15, 452, 79);

2294

2295 // TODO: Add any drawing code that uses hdc here...

2296 EndPaint(hwnd, &ps);

2297 }

2298 break;

2299

2300 case WM_DESTROY:

2301

2302 KAMERA = 1;

2303 waitKey(300);

2304 if (povrat == 1) {

2305 DestroyDynamicFields();

2306 }

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

72

2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339

}

PostQuitMessage(0);
break;

default:
return DefWindowProc(hWnd, message, wParam, 1Param);

}

return O;

// Message handler for about box.
INT_PTR CALLBACK About(HWND hDlg, UINT message, WPARAM wParam, LPARAM 1Param)

{

}

INT_PTR CALLBACK UnesiIme(HWND hDlg,

UNREFERENCED_PARAMETER(LParam);
switch (message)
{
case WM_INITDIALOG:
return (INT_PTR)TRUE;

case WM_COMMAND:
if (LOWORD(wParam) == IDOK || LOWORD(wParam) == IDCANCEL)
{
EndDialog(hDlg, LOWORD(wParam));
return (INT_PTR)TRUE;
}
break;

}
return (INT_PTR)FALSE;

HWND hDlgl;

UINT message, WPARAM wParam, LPARAM 1Param) {

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2340
2341
2342
2343
2344
2345
23416
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372

UNREFERENCED_PARAMETER(LParam);
int nLen;

switch (message) {

case WM_INITDIALOG:
hDlgl = GetDlgItem(hDlg, IDC_EDIT1);
SetFocus(hDlgl);
return (INT_PTR)FALSE;

case WM_COMMAND:

switch (LOWORD(wParam)) {

case IDOK:
hDlgl = GetDlgItem(hDlg, IDC_EDIT1);
nLen = GetWindowTextLengthA(hDlgl);
GetDlgItemTextA(ChDlg, IDC_EDIT1, POM,
POM[nLen] = '\0';
cancel = 0;
EndDialog(hDlg, LOWORD(wParam));
break;

case IDCANCEL:
cancel = 1;
EndDialog(hDlg, LOWORD(wParam));
break;

}

break;

default:
return (INT_PTR)FALSE;
}

return (INT_PTR)TRUE;

// handle to dialog box edit field

nLen + 1);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2373
2374 INT_PTR CALLBACK PregledClanovaBaze(HWND hDlg, UINT message, WPARAM wParam, LPARAM 1Param) {
2375

2376 int selClanl;

2377

2378 switch (message)

2379 i

2380 case WM_INITDIALOG:

2381 {

2382 // Add items to list.

2383 HWND hwndList = GetDlgItem(hDlg, IDC_LIST1);
2384 for (int i = 0; i < brUz / brUzObj; i++)
2385 {

2386 int pos = (int)SendMessageA(ChwndList, LB_ADDSTRING, @, (LPARAM)names[i]);
2387 SendMessage(ChwndList, LB_SETITEMDATA, pos, (LPARAM)i);
2388 }

2389

2390 selClanl = -1;

2391

2392 // Set input focus to the list box.

2393 SetFocus(hwndList);

2394 return TRUE;

2395 3

2396

2397 case WM_COMMAND:

2398

2399 switch (LOWORD(wParam))

2400 {

2401

2402 case IDOK:

2403

2404 EndDialog(hDlg, LOWORD(wParam));

2405 return TRUE;

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

75

2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
20422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2U36
2437
2438

case IDC_LIST1:
switch (HIWORD(wParam))
{
case LBN_SELCHANGE:

HWND hwndList = GetDlgItem(hDlg, IDC_LIST1);
HWND hwndListl = GetDlgItem(hDlg, IDC_STATIC);

// Get selected index.
int 1lbItem = (int)SendMessage(hwndList, LB_GETCURSEL, 0, 0);

// Get item data.
selClanl = (int)SendMessage(ChwndList, LB_GETITEMDATA, lbItem, 0);

ShowMemberImage(ChwndListl, selClanl);
return TRUE;

return TRUE;

case WM_DESTROY:
EndDialog(hDlg, LOWORD(wParam));
return TRUE;

return FALSE;

}

INT_PTR CALLBACK IzbaciClanBaze(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam) {

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2439
2440
2441
2442
2443
2444
2445
2446
20447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2U60
2461
2462
2463
2464
2465
2466
2467
2U68
2U69
2470
2471

switch (message)

{

case WM_INITDIALOG:

{

// Add items to list.

HWND hwndList = GetDlgItem(hDlg, IDC_LIST1);

for (int i = 0; i < brUz / brUzObj; i++)
{
int pos = (int)SendMessageA(hwndList,
SendMessage(hwndList, LB_SETITEMDATA,

selClan = -1;

// Set input focus to the list box.
SetFocus(hwndList);

return TRUE;

case WM_COMMAND:

switch (LOWORD(wParam))
{

case IDCANCEL:
selClan = -1;
case IDOK:

EndDialog(hDlg, LOWORD(wParam));
return TRUE;

case IDC_LIST1:

LB_ADDSTRING, 0,
pos, (LPARAM)i);

(LPARAM)names[i]);

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

77

2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2U85
2U86
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504

switch (HIWORD(wParam))

{
case LBN_SELCHANGE:

HWND hwndList = GetDlgItem(hDlg, IDC_LIST1);
HWND hwndListl = GetDlgItem(hDlg, IDC_STATIC);

// Get selected index.
int 1bItem = (int)SendMessage(ChwndList, LB_GETCURSEL, 0, 0);

// Get item data.
selClan = (int)SendMessage(hwndList, LB_GETITEMDATA, 1lbItem, 0);

ShowMemberImage(ChwndListl, selClan);
return TRUE;

return TRUE;

return FALSE;
}

INT_PTR CALLBACK Create30ElementsDB(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam) {

switch (message)

{

case WM_INITDIALOG:

{
// Add items to list.
HWND hwndList = GetDlgItem(hDlg, IDC_LIST1);
for (int i = 0; i < brUz / brUzObj; i++)

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2505 {

2506 int pos = (int)SendMessageAChwndList, LB_ADDSTRING, @, (LPARAM)names[i]);
2507 SendMessage(hwndList, LB_SETITEMDATA, pos, (LPARAM)i);
2508 }

2509

2510 selClan = -1;

2511 // Set input focus to the list box.

2512 SetFocus(hwndList);

2513 return TRUE;

2514 }

2515

2516 case WM_COMMAND:

2517

2518 switch (LOWORD(wParam))

2519 1

2520

2521 case IDCANCEL:

2522 selClan = -1;

2523 case IDOK:

2524 // destroyWindow("MemberImage");

2525 EndDialog(hDlg, LOWORD(wParam));

2526 return TRUE;

2527

2528 case IDC_LISTI1:

2529

2530 switch (HIWORD(wParam))

2531 i

2532 case LBN_SELCHANGE:

2533

2534 HWND hwndList = GetDlgItem(hDlg, IDC_LIST1);
2535 HWND hwndListl = GetDlgItem(hDlg, IDC_STATIC);
2536

2537 // Get selected index.

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570

int 1bItem = (int)SendMessage(hwndList, LB_GETCURSEL, 0, 0);

// Get item data.
selClan = (int)SendMessage(hwndList, LB_GETITEMDATA, 1lbItem, 0);

ShowMemberImage(ChwndListl, selClan); // hwndListl
return TRUE;

return TRUE;

return FALSE;
}

INT_PTR CALLBACK CheckBoxes(HWND hDlg, UINT message, WPARAM wParam, LPARAM 1Param) {

HWND hD1lgl;
UNREFERENCED_PARAMETER(1Param);
int i;

switch (message) {
case WM_INITDIALOG:
for (i =0; i < 2; i++) {
hDlgl = GetDlgItem(hDlg, i + IDC_RADIOL);
SendMessage(hDlgl, BM_SETCHECK, checkBoxes[i], 0);
}
return (INT_PTR)TRUE;

case WM_COMMAND:
switch (LOWORD(wParam)) f{

C:\Users\MPC-MP9\Documents\Visual Studio 2022\Projects\FaceRec9\FaceRec9\FaceRec9.cpp

2571 case IDOK:

2572 for (i = 0; i< 2; i++) {

2573 hDlgl = GetDlgItem(hDlg, i + IDC_RADIO1);
2574 checkBoxes[i] = SendMessage(hDlgl, BM_GETCHECK, 0, 0);
2575 }

2576 EndDialog(hDlg, LOWORD(wParam));

2577 break;

2578

2579 case IDCANCEL:

2580 cancel = 1;

2581 EndDialog(hDlg, LOWORD(wParam));

2582 break;

2583 }

2584 break;

2585 default:

2586 return (INT_PTR)FALSE;

2587 }

2588 return (INT_PTR)TRUE;

2589 }

2590

