EXPONENTIAL GROWTH & DECAY

The exponential function is One of the most important functions In the applications of mathematics...

E.G...it is used in the study of Bacteria growth in a lab, Decay of radioactive material, And calculating interest earned In a bank account...!

If y is a function of t, such that:

$$y\left(t\right)=ka^{t}$$

Where k>0 & a are constants.

a>0 & a cannot be 1
Then we say that y is growing/decaying exponentially.

Decaying if: 0<a<1

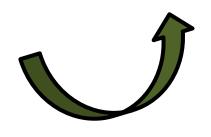
Can also be written as:

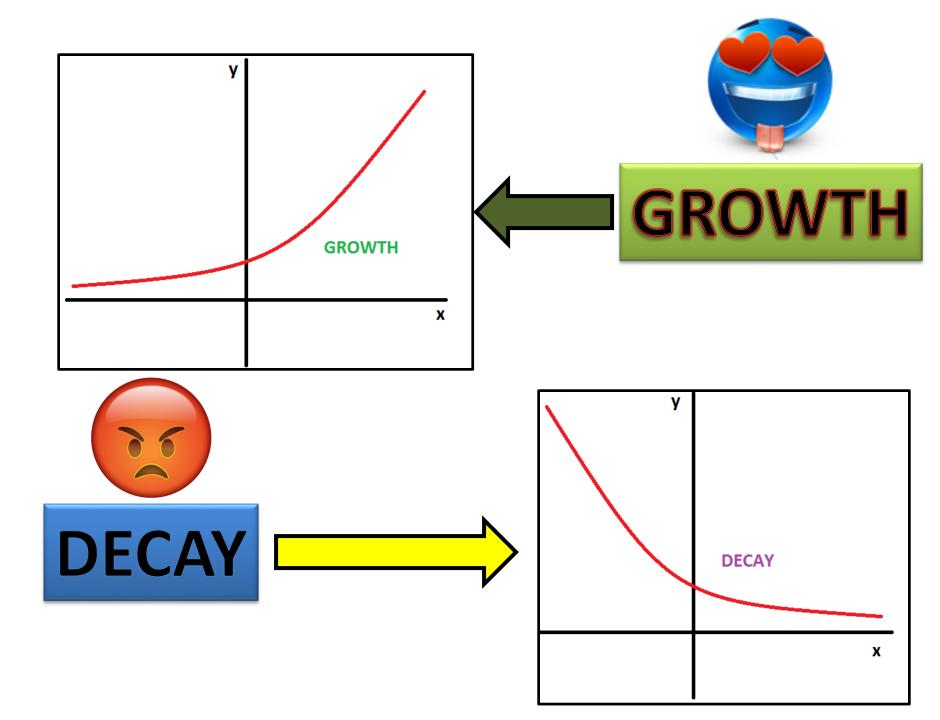
$$y(t) = ke^{at}$$

a > 0...GROWING

a < 0...DECAYING





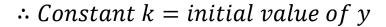


Meaning of k & a

The initial value is the value of y at time zero.

$$y(0)$$
 when $t = 0$

$$y_0 = ka^0 = k$$



$$y(t) = ka^t$$

$$y(t+1) = ka^{t+1}$$

$$\frac{y(t+1)}{y(t)} = \frac{ka^{t+1}}{ka^t} = a$$

$$\therefore y(t+1) = ay(t)$$

Are you ready for a derivation...?

...YES!!

Are you sure...?

Well...check this out...

generally, suppose we know the value of the function at 2 different times.

$$y_1 = ce^{kt_1} \dots (1)$$

 $y_2 = ce^{kt_2} \dots (2)$

dividing the 1st equation by the second equation ...

$$\frac{y_1}{y_2} = e^{k(t_1 - t_2)}$$

taking natural log ...

$$lny_1 - lny_2 = k(t_1 - t_2)$$

dividng by $t_1 - t_2$...

$$k = \frac{lny_1 - lny_2}{(t_1 - t_2)}$$

substituting c back ...

$$y_1 = ce^{\frac{\ln y_1 - \ln y_2}{(t_1 - t_2)} \cdot t_1}$$

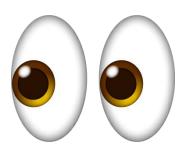
taking natural log ...

$$lny_1 = lnc + \frac{lny_1 - lny_2}{(t_1 - t_2)}.t1$$

in summary we have 2 equations:

$$y_1 = ce^{kt_1} \dots (1)$$

 $y_2 = ce^{kt_2} \dots (2)$



allows us to solve for c ...

$$\therefore c = e^{\left(\frac{t_1 \cdot lny_2 - t_2 lny_1}{t_1 - t_2}\right)}$$

SHALL WE SOLVE SOME EXAMPLES TOGETHER...

Example 1:

The mass of a colony of bacteria grows exponentially. Initially the colony has a mass of 2mg.

3 hours later...the mass is 2.1mg.

- a) Express the mass of the colony as a function of time.
- b) How long does it take for the mass to be 5mg?

let y(t) be the mass of the colony after t hours ...

$$y(0) = 2$$
$$y(3) = 2.1$$

$$y(t) = ka^{t}$$
$$k = 2$$
$$ka^{3} = 2.1$$

$$\frac{2.1}{2} = a^3$$

$$a = \sqrt[3]{1.05}$$

$$a = 1.05^{\frac{1}{3}}$$

finally ...

$$y = ka^{t}$$

$$= 2 \left[(1.05)^{\frac{1}{3}} \right]^{t}$$

$$= 2(1.05)^{\frac{t}{3}}$$

we are asked to find the time when the mass is 5mg ...

$$5 = 2(1.05)^{\frac{t}{3}}$$

$$\log\frac{5}{2} = \log(1.05)^{\frac{t}{3}}$$

$$\frac{t}{3} = \frac{\log 2.5}{\log 1.05}$$

$$t = 3 \times 18.8$$

$$t = 56.3 hours$$

Example 2:

The amount of radioactivity given off by a substance decrease by 5% every hour.

After how long will it be 1% of its original value?

let the original value be R

After t hours, the amount will be $R(0.95)^t$

$$\frac{R}{100} = R(0.95)^t$$

$$\log \frac{1}{100} = t \log 0.95$$

$$t = -\frac{2}{\log 0.95}$$

$$t = 89.78 hours$$

Example 3:

A herd of llamas has 1000 llamas in it.

The population is growing exponentially.

At time t= 4...it has 2000 llamas

Write a formula at any time t.

$$f(t) = c.e^{kt}$$

where f(t) is the number of llamas at time t. c and k are constants to be determined

at t = 0 ... there are 1000 llamas at t = 4 ... there are 2000 llamas

 $c = value \ of \ f \ at \ t = 0 \dots which \ is \ 1000$

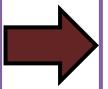
$$k = \left(\frac{t_1 \cdot \ln y_2 - t_2 \ln y_1}{t_1 - t_2}\right)$$

$$= \frac{\ln 1000 - \ln 2000}{0 - 4}$$

$$= \ln \frac{1000}{2000} - 4$$

$$= \frac{\ln 0.5}{-4}$$

$$= \ln \frac{2}{4}$$



$$f(t) = 1000e^{\frac{\ln 2}{4}}$$

$$f(t) = 1000.2^{\frac{t}{4}}$$

Example 4:

A colony of bacteria is growing exponentially.

At time t = 0...it has 10 bacteria

At time t = 4 it has 2000 bacteria

At what time will it have 100 000 bacteria?

$$k = \left(\frac{t_1 \cdot lny_2 - t_2 lny_1}{t_1 - t_2}\right)$$

$$= \frac{ln10 - ln2000}{0 - 4}$$

$$= \frac{ln\frac{10}{2000}}{-4}$$

$$=\frac{\ln 200}{4}$$

$$f(t) = 10.e^{\ln\frac{200}{4}.t}$$
$$= 10.200^{\frac{t}{4}}$$

$$100\ 000 = 10.\,e^{\ln\frac{200}{4}.t}.....\div 10$$

$$\ln 10\ 000 = \ln \frac{200}{4}.t$$

$$t = 4 \left(\frac{\ln 10000}{\ln 200} \right) \dots \dots solving for t$$

$$t = 6.95$$

The half life

Given the process of exponential decay...we can ask how long it would take for the half the original amount to remain...

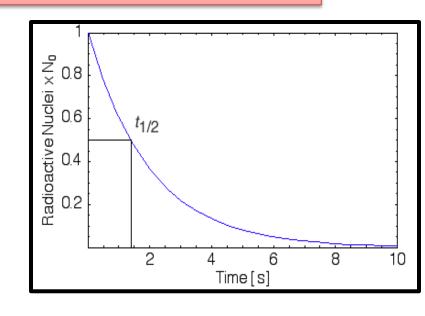
$$y(t) = \frac{y_0}{2}$$
$$\frac{y_0}{2} = y_0 \cdot e^{-kt}$$
$$\frac{1}{2} = e^{-kt}$$

taking reciprocals ...

$$2 = \frac{1}{e^{-kt}} = e^{kt}$$

$$\ln 2 = \ln e^{kt} = kt$$

$$au = rac{ln2}{k}$$



this symbol represents half life ...!!!

In 1986, the Chernobyl nuclear plant exploded.

Two radioactive elements were released.

These are **lodine**¹³¹ whose **half life is 8 days...**

& the other was Cesium¹³⁷ whose half life is 30 years.

With our model for radioactive decay, we can predict how much of this material would remain over time...

Lets determine the decay constants

for iodine¹³¹

$$k = \frac{\ln 2}{\tau}$$

$$=\frac{\ln 2}{8}$$

k = 0.0866 per day

thus if t is measured in days ... the amount of I^{131} would be ...

$$y(t) = y_0.e^{-0.0866(t)}$$

how long would I¹³¹take to decay to 0.1% of its original value?

for cesium¹³⁷

$$k = \frac{\ln 2}{\tau}$$

$$=\frac{\ln 2}{30}$$

$$k = 0.023 \ per \ year$$

$$y(t) = y_0 e^{-0.023(t)}$$

$$0.001y_0 = y_0.e^{-0.0866(t)}$$

$$0.001 = e^{-0.0866(t)}$$

$$\ln 0.001 = -0.0866 (t)$$

$$t = 79.7 \, days$$