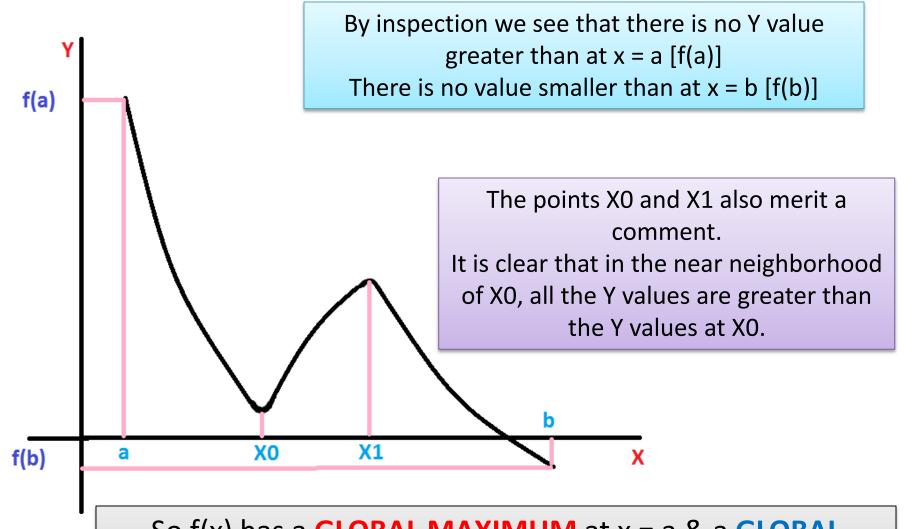
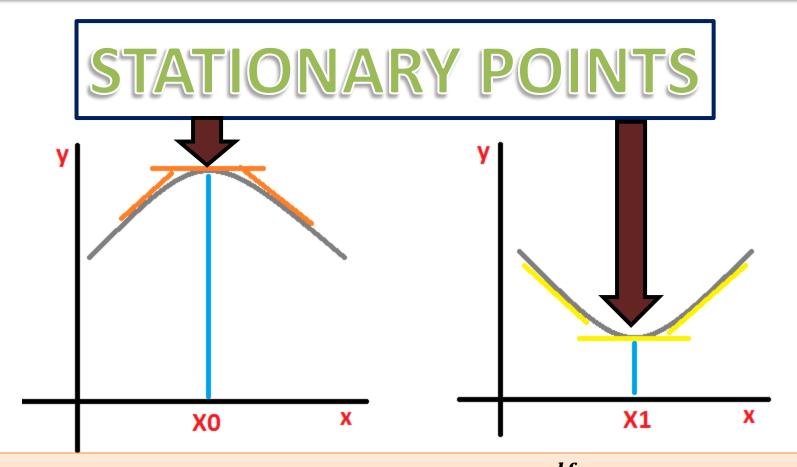
MAXIMA & MINIMA & APPLICATIONS



So f(x) has a **GLOBAL MAXIMUM** at x = a & a **GLOBAL**MINIMUM at x = b

It also has a **LOCAL MAXIMUM** at x = X1 & a **LOCAL**MINIMUM at x = X0

A stationary point on a curve is one at which the derivative has a zero value



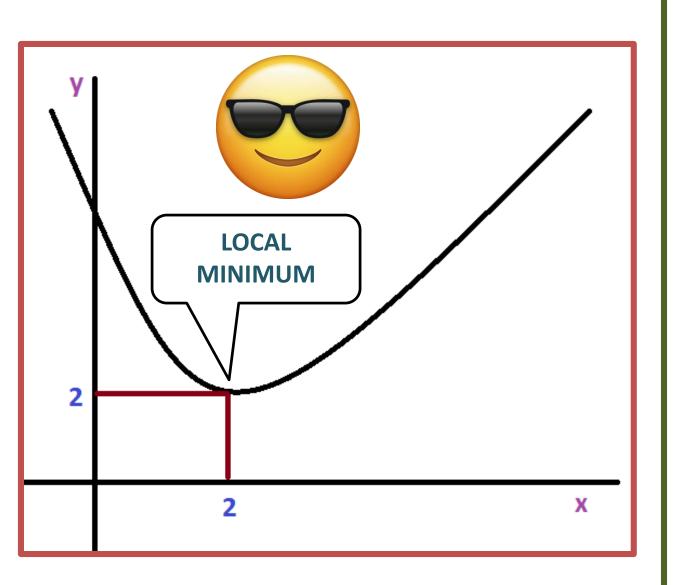
Points on the curve y = f(x) at which $\frac{df}{dx} = 0$ are called **STATIONARY POINTS** of the function

Example:

Sketch the curve

$$y = (x-2)^2 + 2$$

& locate the stationary points on the curve.



At a stationary point...

$$\frac{df}{dx}=0$$

We have $y = (x - 2)^2 + 2$ So x = 2

The function has 1 stationary point at x = 2, y = 2.

This point is also called a **LOCAL MINIMUM**

Example:

Find the stationary points:

a)
$$f(x) = 3x^2 + 2x - 9$$

b) $f(x) = x^3 - 6x^2 + 9x - 2$

a)

$$f(x) = 3x^2 + 2x - 9$$
$$f'(x) = 6x + 2$$

The stationary points are found by solving the equation ...

$$f'(x) = 0$$
$$6x + 2 = 0$$
$$x = -\frac{1}{3}$$

Sub x in f(x)

$$f(x) = 3x^{2} + 2x - 9$$

$$= 3\left(-\frac{1}{3}\right)^{2} + 2\left(-\frac{1}{3}\right) - 9$$

$$= -\frac{28}{3}$$

$$f(x) = x^3 - 6x^2 + 9x - 2$$
$$f'(x) = 3x^2 - 12x + 9$$

$$3x^{2} - 12x + 9 = 0$$

$$= 3(x^{2} - 4x + 3)$$

$$= 3(x - 3)(x - 1)$$

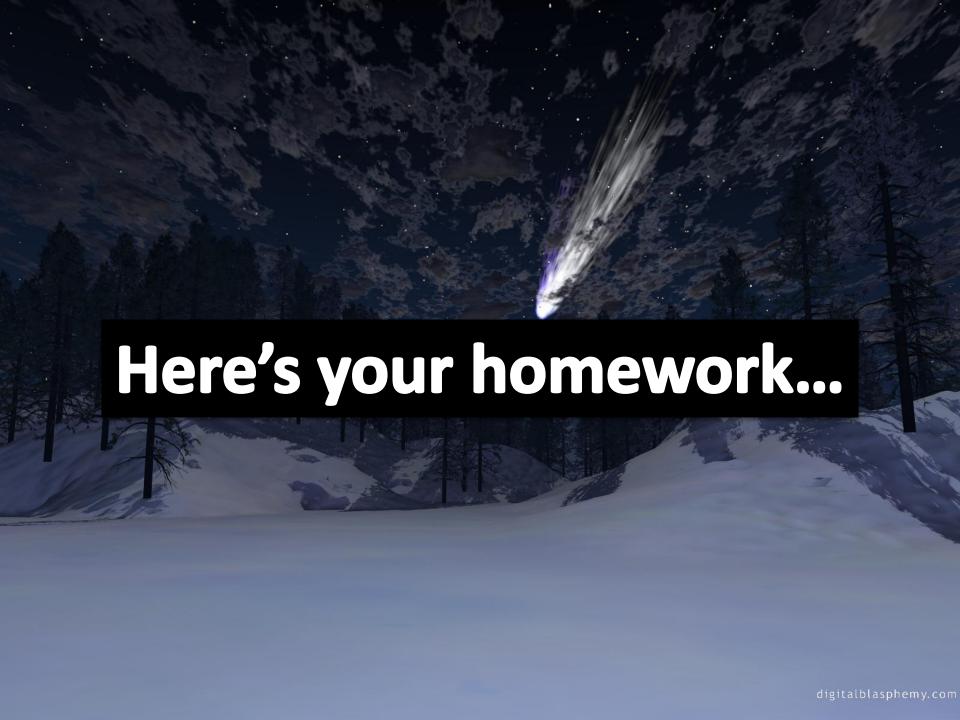
$$x = 3 & x = 1$$

Sub x = 3 and x = 1 in f(x)

$$3(3)^2 - 12(3) + 9$$

&
 $3(1)^2 - 12(1) + 9$

stationary points are (3; 2) & (1; 2)



Exercise 1:

$$1.f(x) = -u^2 - 6u + 16$$
$$2.f(x) = 3x^2 - 4x + 7$$

$$2. f(x) = 3x^2 - 4x + 7$$

$$3. f(x) = \frac{1}{3}x^3 - x^2 - 3x + 2$$

$$4. f(x) = x^3 - 6x^2 - 15x + 16$$

Find the stationary point of the function

$$y = x^2 - 2x + 3$$

& hence determine the nature of this point.

Determine the nature of the stationary points of the following functions...

$$y = 16 - 6u - u^2$$

$$y = 3x^2 - 4x + 7$$

Find the stationary points of the function

$$y = 2x^3 - 9x^2 + 12x - 3$$

& determine their nature

Find the maximum and minimum values of the function

$$y=4x^3+3x^2-6x$$

On the interval [-2;1]

Applied Maxima & Minima Problems

The process of finding maximum and minimum values is called **OPTIMIZATION**.

We are trying to do things like maximize the profit in a company, or minimize the costs, or find the least amount of material to make a product.

Example 1:

The daily profit of an oil refinery is given by:

$$P = 8x - 0.02x^2$$

x = number of barrels of oil refined

How many barrels will give the maximum profit?

What is the maximum profit?

The profit is a maximum at
$$\frac{dp}{dx} = 0$$

$$\frac{dp}{dx} = -0.04x + 8$$

$$-0.04x + 8 = 0$$

$$-0.04x = -8$$

$$x = \frac{-8}{-0.04}$$

$$x = 200$$

Is it a maximum?

$$\frac{d^2P}{dx^2} = -0.04 \dots$$

< 0 thus its a maximum

When
$$x = 200 ...$$

$$P = 8(200) - 0.02(200)^2$$

$$P = 800$$

If the company refines 200 barrels a day ...

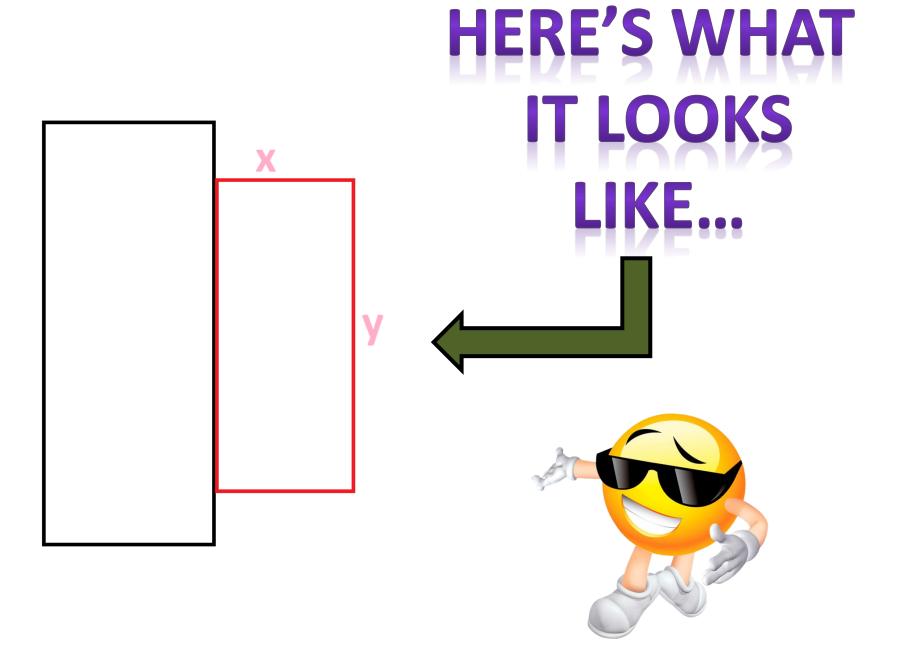
a maximum profit of 800 is reached

Example 2:

A rectangular storage area is to be constructed along the side of a tall building.

A security fence is required along the remaining 3 sides of the area.

What is the maximum area that can be enclosed with 800m of fencing?



$$Area = xy$$
$$2x + y = 800$$
$$y = 800 - 2x$$

$$Area = xy$$

= $x (800 - 2x)$
 $Area = 800x - 2x^2$

To maximise the area ...

$$find when \frac{dA}{dx} = 0$$

$$\frac{dA}{dx} = 800 - 4x$$

$$800 - 4x = 0$$

$$x = \frac{-800}{-4}$$

$$x = 200$$

Substitute x = 200 in y

$$800 - 2(200)$$
 $= 400$

Is it a maximum?

$$\frac{d^2A}{dx^2} = -4 \dots$$

< 0 ... Therefore maximum

Maximum area occurs when
$$x = 200 \& y = 400$$

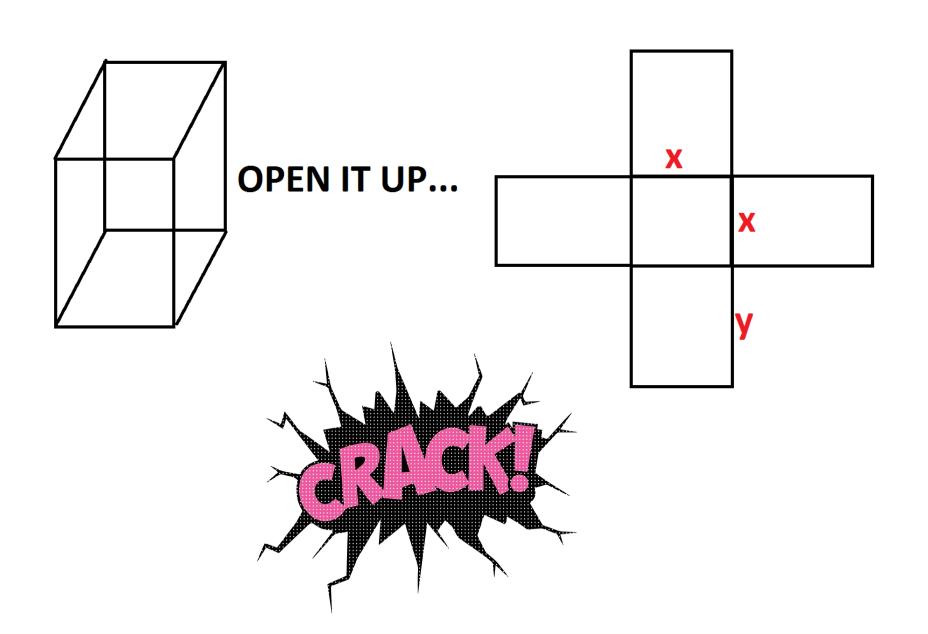
$$Area = 200 \times 400$$

= $80\ 000m^2 = 8\ ha$

Example 3:

A box with a square base has no top.

If 64cm² of material is used, what is the maximum possible volume for the box?



$Volume = x^2y$

Surface area of the box is $64cm^2$ Area of the base of the box is x^2 & area of each side is xy

Area of the base + area of the 4 sides is given by ...

$$x^{2} + 4xy = 64cm^{2}$$

$$4xy = 64 - x^{2}$$

$$y = \frac{64 - x^{2}}{4x}$$

$$y = \frac{16}{x} - \frac{x}{4}$$

volume can be
re – written as

$$V = x^{2}y$$

$$= x^{2}(\frac{16}{x} - \frac{x}{4})$$

$$16x - \frac{x^{3}}{4}$$

$$\frac{dV}{dx} = 16 - \frac{3}{4}x^2$$

$$16 - \frac{3}{4}x^2 = 0$$

$$x = 4.62$$

Substitute x = 4.62 in y ...

$$y = \frac{16}{x} - \frac{x}{4}$$
$$= \frac{16}{4.62} - \frac{4.62}{4}$$
$$= 2.31$$

is it a maximum? $\frac{d^2V}{dx^2} = -\frac{3}{2}x \dots < 0 \dots Maximum$

Maximum Volume =
$$x^2y$$

= $(4.62)^2(2.31)$
= $49.3cm^3$

$$Area = x^{2} + 4xy$$

$$= (4.62)^{2} + 4(4.62)(2.31)$$

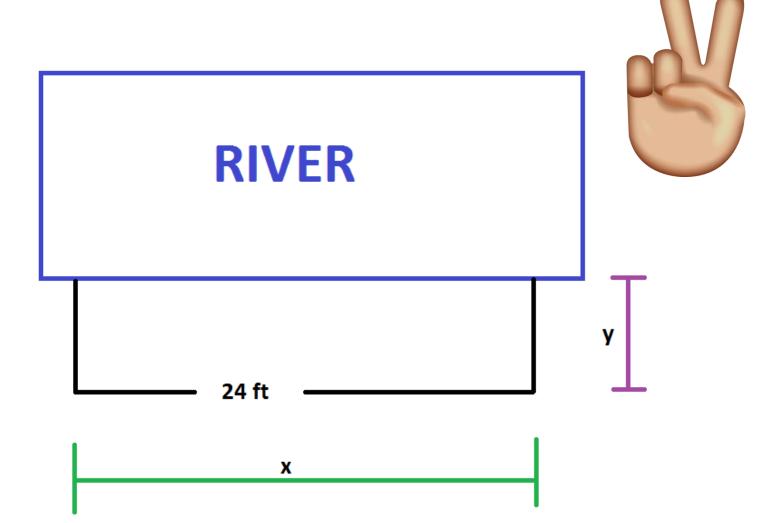
$$= 64$$

Example 4:

A rectangular lot is bounded at the back by a river.

No fence is need along the river, and there has to be a 24ft opening at the front.

If the fence along the front costs R1.50 per foot, & along the sides R1.00 per foot, find the dimensions of the largest lot which can be fenced for R300.



Total cost:

$$300 = 2y + 1.5(x - 24)$$

 $y = 168 - 0.75x$

$$Area = xy$$

= $x(168 - 0.75x)$
= $168x - 0.75x^2$

$$\frac{dA}{dx} = 168 - 1.5x$$

$$-1.5x + 168 = 0$$

$$-1.5x = -168$$

$$x = \frac{-168}{-1.5}$$

$$x = 112ft$$

$$y = 168 - 0.75(112)$$

 $y = 84ft$

 $dimensions = 84ft \times 112ft$